
Notes on Discrete Mathematics

James Aspnes

2017-12-09 22:09

i

Copyright c© 2004–2017 by James Aspnes. Distributed under a Creative Com-
mons Attribution-ShareAlike 4.0 International license: https://creativecommons.
org/licenses/by-sa/4.0/.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Contents

Table of contents ii

List of figures xvii

List of tables xix

List of algorithms xx

Preface xxi

Syllabus xxii

Resources xxvi

Internet resources xxvii

Lecture schedule xxviii

1 Introduction 1
1.1 So why do I need to learn all this nasty mathematics? 1
1.2 But isn’t math hard? . 2
1.3 Thinking about math with your heart 3
1.4 What you should know about math 3

1.4.1 Foundations and logic 4
1.4.2 Basic mathematics on the real numbers 4
1.4.3 Fundamental mathematical objects 5
1.4.4 Modular arithmetic and polynomials 6
1.4.5 Linear algebra . 6
1.4.6 Graphs . 6
1.4.7 Counting . 7
1.4.8 Probability . 7

ii

CONTENTS iii

1.4.9 Tools . 8

2 Mathematical logic 9
2.1 The basic picture . 9

2.1.1 Axioms, models, and inference rules 9
2.1.2 Consistency . 10
2.1.3 What can go wrong 10
2.1.4 The language of logic 11
2.1.5 Standard axiom systems and models 11

2.2 Propositional logic . 12
2.2.1 Operations on propositions 13

2.2.1.1 Precedence 15
2.2.2 Truth tables . 16
2.2.3 Tautologies and logical equivalence 17

2.2.3.1 Inverses, converses, and contrapositives . . . 19
2.2.3.2 Equivalences involving true and false 21

Example . 22
2.2.4 Normal forms . 23

2.3 Predicate logic . 25
2.3.1 Variables and predicates 25
2.3.2 Quantifiers . 26

2.3.2.1 Universal quantifier 26
2.3.2.2 Existential quantifier 27
2.3.2.3 Negation and quantifiers 27
2.3.2.4 Restricting the scope of a quantifier 28
2.3.2.5 Nested quantifiers 29
2.3.2.6 Examples . 31

2.3.3 Functions . 32
2.3.4 Equality . 32

2.3.4.1 Uniqueness 33
2.3.5 Models . 34

2.3.5.1 Examples . 34
2.4 Proofs . 35

2.4.1 Inference Rules . 36
2.4.2 Proofs, implication, and natural deduction 38

2.4.2.1 The Deduction Theorem 39
2.4.2.2 Natural deduction 39

2.4.3 Inference rules for equality 40
2.4.4 Inference rules for quantified statements 42

2.5 Proof techniques . 44

CONTENTS iv

2.6 Examples of proofs . 47
2.6.1 Axioms for even numbers 47
2.6.2 A theorem and its proof 48
2.6.3 A more general theorem 50
2.6.4 Something we can’t prove 51

3 Set theory 52
3.1 Naive set theory . 52
3.2 Operations on sets . 54
3.3 Proving things about sets . 55
3.4 Axiomatic set theory . 57
3.5 Cartesian products, relations, and functions 59

3.5.1 Examples of functions 61
3.5.2 Sequences . 61
3.5.3 Functions of more (or less) than one argument 62
3.5.4 Composition of functions 62
3.5.5 Functions with special properties 62

3.5.5.1 Surjections 63
3.5.5.2 Injections . 63
3.5.5.3 Bijections . 63
3.5.5.4 Bijections and counting 63

3.6 Constructing the universe . 64
3.7 Sizes and arithmetic . 66

3.7.1 Infinite sets . 66
3.7.2 Countable sets . 68
3.7.3 Uncountable sets . 68

3.8 Further reading . 69

4 The real numbers 70
4.1 Field axioms . 71

4.1.1 Axioms for addition 71
4.1.2 Axioms for multiplication 72
4.1.3 Axioms relating multiplication and addition 74
4.1.4 Other algebras satisfying the field axioms 75

4.2 Order axioms . 76
4.3 Least upper bounds . 77
4.4 What’s missing: algebraic closure 79
4.5 Arithmetic . 79
4.6 Connection between the reals and other standard algebras . . 80
4.7 Extracting information from reals 82

CONTENTS v

5 Induction and recursion 83
5.1 Simple induction . 83
5.2 Alternative base cases . 85
5.3 Recursive definitions work . 86
5.4 Other ways to think about induction 86
5.5 Strong induction . 87

5.5.1 Examples . 88
5.6 Recursively-defined structures 89

5.6.1 Functions on recursive structures 90
5.6.2 Recursive definitions and induction 90
5.6.3 Structural induction 91

6 Summation notation 92
6.1 Summations . 92

6.1.1 Formal definition . 93
6.1.2 Scope . 94
6.1.3 Summation identities 95
6.1.4 Choosing and replacing index variables 96
6.1.5 Sums over given index sets 97
6.1.6 Sums without explicit bounds 98
6.1.7 Infinite sums . 98
6.1.8 Double sums . 99

6.2 Products . 99
6.3 Other big operators . 100
6.4 Closed forms . 101

6.4.1 Some standard sums 101
6.4.2 Guess but verify . 103
6.4.3 Ansatzes . 103

7 Asymptotic notation 105
7.1 Definitions . 105
7.2 Motivating the definitions . 105
7.3 Proving asymptotic bounds 106
7.4 General principles for dealing with asymptotic notation . . . 107

7.4.1 Remember the difference between big-O, big-Ω, and
big-Θ . 107

7.4.2 Simplify your asymptotic terms as much as possible . 108
7.4.3 Use limits (may require calculus) 108

7.5 Asymptotic notation and summations 109
7.5.1 Pull out constant factors 109

CONTENTS vi

7.5.2 Bound using a known sum 109
7.5.2.1 Geometric series 109
7.5.2.2 Constant series 110
7.5.2.3 Arithmetic series 110
7.5.2.4 Harmonic series 110

7.5.3 Bound part of the sum 111
7.5.4 Integrate . 111
7.5.5 Grouping terms . 111
7.5.6 An odd sum . 111
7.5.7 Final notes . 112

7.6 Variations in notation . 112
7.6.1 Absolute values . 112
7.6.2 Abusing the equals sign 112

8 Number theory 114
8.1 Divisibility . 115
8.2 The division algorithm . 115
8.3 Modular arithmetic and residue classes 117

8.3.1 Arithmetic on residue classes 117
8.4 Greatest common divisors . 119

8.4.1 The Euclidean algorithm for computing gcd(m,n) . . 120
8.4.2 The extended Euclidean algorithm 120

8.4.2.1 Example . 121
8.4.2.2 Applications 121

8.5 The Fundamental Theorem of Arithmetic 123
8.5.1 Unique factorization and gcd 124

8.6 More modular arithmetic . 124
8.6.1 Division in Zm . 124
8.6.2 The Chinese Remainder Theorem 126
8.6.3 The size of Z∗m and Euler’s Theorem 128

8.7 RSA encryption . 129

9 Relations 132
9.1 Representing relations . 132

9.1.1 Directed graphs . 132
9.1.2 Matrices . 133

9.2 Operations on relations . 134
9.2.1 Composition . 134
9.2.2 Inverses . 135

9.3 Classifying relations . 135

CONTENTS vii

9.4 Equivalence relations . 136
9.4.1 Why we like equivalence relations 138

9.5 Partial orders . 138
9.5.1 Drawing partial orders 140
9.5.2 Comparability . 140
9.5.3 Lattices . 141
9.5.4 Minimal and maximal elements 142
9.5.5 Total orders . 143

9.5.5.1 Topological sort 143
9.5.6 Well orders . 146

9.6 Closures . 148
9.6.1 Examples . 150

10 Graphs 152
10.1 Types of graphs . 153

10.1.1 Directed graphs . 153
10.1.2 Undirected graphs . 153
10.1.3 Hypergraphs . 154

10.2 Examples of graphs . 155
10.3 Local structure of graphs . 156
10.4 Some standard graphs . 156
10.5 Subgraphs and minors . 161
10.6 Graph products . 162
10.7 Functions between graphs . 163
10.8 Paths and connectivity . 164
10.9 Cycles . 165
10.10Proving things about graphs 167

10.10.1Paths and simple paths 167
10.10.2The Handshaking Lemma 168
10.10.3Characterizations of trees 168
10.10.4Spanning trees . 172
10.10.5Eulerian cycles . 172

11 Counting 174
11.1 Basic counting techniques . 175

11.1.1 Equality: reducing to a previously-solved case 175
11.1.2 Inequalities: showing |A| ≤ |B| and |B| ≤ |A| 175
11.1.3 Addition: the sum rule 176

11.1.3.1 For infinite sets 177
11.1.3.2 The Pigeonhole Principle 177

CONTENTS viii

11.1.4 Subtraction . 178
11.1.4.1 Inclusion-exclusion for infinite sets 178
11.1.4.2 Combinatorial proof 179

11.1.5 Multiplication: the product rule 179
11.1.5.1 Examples . 180
11.1.5.2 For infinite sets 180

11.1.6 Exponentiation: the exponent rule 181
11.1.6.1 Counting injections 181

11.1.7 Division: counting the same thing in two different ways182
11.1.7.1 Binomial coefficients 182
11.1.7.2 Multinomial coefficients 183

11.1.8 Applying the rules . 184
11.1.9 An elaborate counting problem 186
11.1.10Further reading . 189

11.2 Binomial coefficients . 189
11.2.1 Recursive definition 190

11.2.1.1 Pascal’s identity: algebraic proof 191
11.2.2 Vandermonde’s identity 192

11.2.2.1 Combinatorial proof 192
11.2.2.2 Algebraic proof 193

11.2.3 Sums of binomial coefficients 194
11.2.4 The general inclusion-exclusion formula 194
11.2.5 Negative binomial coefficients 195
11.2.6 Fractional binomial coefficients 197
11.2.7 Further reading . 197

11.3 Generating functions . 197
11.3.1 Basics . 197

11.3.1.1 A simple example 197
11.3.1.2 Why this works 198
11.3.1.3 Formal definition 199

11.3.2 Some standard generating functions 202
11.3.3 More operations on formal power series and generating

functions . 202
11.3.4 Counting with generating functions 203

11.3.4.1 Disjoint union 203
11.3.4.2 Cartesian product 204
11.3.4.3 Repetition 204

Example: (0|11)∗ 204
Example: sequences of positive integers 204

11.3.4.4 Pointing . 206

CONTENTS ix

11.3.4.5 Substitution 206
Example: bit-strings with primes 207
Example: (0|11)* again 207

11.3.5 Generating functions and recurrences 207
11.3.5.1 Example: A Fibonacci-like recurrence 208

11.3.6 Recovering coefficients from generating functions . . . 208
11.3.6.1 Partial fraction expansion and Heaviside’s

cover-up method 210
Example: A simple recurrence 210
Example: Coughing cows 211
Example: A messy recurrence 212

11.3.6.2 Partial fraction expansion with repeated roots214
Solving for the PFE directly 214
Solving for the PFE using the extended cover-up

method 216
11.3.7 Asymptotic estimates 217
11.3.8 Recovering the sum of all coefficients 218

11.3.8.1 Example . 218
11.3.9 A recursive generating function 219
11.3.10Summary of operations on generating functions 222
11.3.11Variants . 223
11.3.12Further reading . 223

12 Probability theory 224
12.1 Events and probabilities . 225

12.1.1 Probability axioms . 225
12.1.1.1 The Kolmogorov axioms 226
12.1.1.2 Examples of probability spaces 227

12.1.2 Probability as counting 227
12.1.2.1 Examples . 228

12.1.3 Independence and the intersection of two events . . . 228
12.1.3.1 Examples . 229

12.1.4 Union of events . 230
12.1.4.1 Examples . 230

12.1.5 Conditional probability 231
12.1.5.1 Conditional probabilities and intersections of

non-independent events 231
12.1.5.2 The law of total probability 232
12.1.5.3 Bayes’s formula 232

12.2 Random variables . 233

CONTENTS x

12.2.1 Examples of random variables 233
12.2.2 The distribution of a random variable 234

12.2.2.1 Some standard distributions 234
12.2.2.2 Joint distributions 236

Examples . 236
12.2.3 Independence of random variables 236

12.2.3.1 Examples . 237
12.2.3.2 Independence of many random variables . . . 237

12.2.4 The expectation of a random variable 238
12.2.4.1 Variables without expectations 239
12.2.4.2 Expectation of a sum 239

Example . 240
12.2.4.3 Expectation of a product 240
12.2.4.4 Conditional expectation 241

Examples . 242
12.2.4.5 Conditioning on a random variable 244

12.2.5 Markov’s inequality 245
12.2.5.1 Example . 246
12.2.5.2 Conditional Markov’s inequality 246

12.2.6 The variance of a random variable 246
12.2.6.1 Multiplication by constants 247
12.2.6.2 The variance of a sum 248
12.2.6.3 Chebyshev’s inequality 249

Application: showing that a random variable is
close to its expectation 249

Application: lower bounds on random variables 250
12.2.7 Probability generating functions 250

12.2.7.1 Sums . 251
12.2.7.2 Expectation and variance 251

12.2.8 Summary: effects of operations on expectation and
variance of random variables 252

12.2.9 The general case . 253
12.2.9.1 Densities . 254
12.2.9.2 Independence 255
12.2.9.3 Expectation 255

13 Linear algebra 257
13.1 Vectors and vector spaces . 257

13.1.1 Relative positions and vector addition 258
13.1.2 Scaling . 259

CONTENTS xi

13.2 Abstract vector spaces . 260
13.3 Matrices . 261

13.3.1 Interpretation . 262
13.3.2 Operations on matrices 263

13.3.2.1 Transpose of a matrix 263
13.3.2.2 Sum of two matrices 263
13.3.2.3 Product of two matrices 264
13.3.2.4 The inverse of a matrix 265

Example . 266
13.3.2.5 Scalar multiplication 267

13.3.3 Matrix identities . 267
13.4 Vectors as matrices . 269

13.4.1 Length . 270
13.4.2 Dot products and orthogonality 271

13.5 Linear combinations and subspaces 272
13.5.1 Bases . 272

13.6 Linear transformations . 274
13.6.1 Composition . 275
13.6.2 Role of rows and columns of M in the product Mx . . 275
13.6.3 Geometric interpretation 276
13.6.4 Rank and inverses . 278
13.6.5 Projections . 279

13.7 Further reading . 282

14 Finite fields 283
14.1 A magic trick . 283
14.2 Fields and rings . 284
14.3 Polynomials over a field . 286
14.4 Algebraic field extensions . 287
14.5 Applications . 289

14.5.1 Linear-feedback shift registers 289
14.5.2 Checksums . 290
14.5.3 Cryptography . 291

A Assignments 292
A.1 Assignment 1: Due Wednesday, 2017-09-13, at 5:00 pm 292

A.1.1 A curious proposition 293
A.1.2 Relations . 294
A.1.3 A theory of shirts . 295

A.2 Assignment 2: Due Wednesday, 2017-09-20, at 5:00 pm 297

CONTENTS xii

A.2.1 Arithmetic, or is it? 297
A.2.2 Some distributive laws 298
A.2.3 Elements and subsets 299

A.3 Assignment 3: Due Wednesday, 2017-09-27, at 5:00 pm 300
A.3.1 A powerful problem 300
A.3.2 A correspondence . 300
A.3.3 Inverses . 301

A.4 Assignment 4: Due Wednesday, 2017-10-04, at 5:00 pm 301
A.4.1 Covering a set with itself 301
A.4.2 More inverses . 301
A.4.3 Rational and irrational 302

A.5 Assignment 5: Due Wednesday, 2017-10-11, at 5:00 pm 302
A.5.1 A recursive sequence 302
A.5.2 Comparing products 303
A.5.3 Rubble removal . 304

A.6 Assignment 6: Due Wednesday, 2017-10-25, at 5:00 pm 305
A.6.1 An oscillating sum . 305
A.6.2 An approximate sum 307
A.6.3 A stretched function 307

A.7 Assignment 7: Due Wednesday, 2017-11-01, at 5:00 pm 308
A.7.1 Divisibility . 308
A.7.2 Squares . 309
A.7.3 A Series of Unfortunate Exponents 309

A.8 Assignment 8: Due Wednesday, 2017-11-08, at 5:00 pm 310
A.8.1 Minimal and maximal elements 310
A.8.2 No trailing zeros . 311
A.8.3 Domination . 313

A.9 Assignment 9: Due Wednesday, 2017-11-15, at 5:00 pm 314
A.9.1 Quadrangle closure . 314
A.9.2 Cycles . 315
A.9.3 Deleting a graph . 316

A.10 Assignment 10: Due Wednesday, 2017-11-29, at 5:00 pm . . . 317
A.10.1 Too many injections 317
A.10.2 Binomial coefficients 317
A.10.3 Variable names . 318

B Exams 322
B.1 CPSC 202 Exam 1, October 17th, 2017 322

B.1.1 Factorials (20 points) 322
B.1.2 A tautology (20 points) 322

CONTENTS xiii

B.1.3 Subsets (20 points) . 323
B.1.4 Surjective functions (20 points) 323

B.2 CPSC 202 Exam 2, December 7th, 2017 323
B.2.1 Non-decreasing sequences (20 points) 324
B.2.2 Perfect matchings (20 points) 325
B.2.3 Quadratic forms (20 points) 326
B.2.4 Minimal lattices (20 points) 327

C Sample assignments from Fall 2013 328
C.1 Assignment 1: due Thursday, 2013-09-12, at 5:00 pm 328

C.1.1 Tautologies . 328
C.1.2 Positively equivalent 330
C.1.3 A theory of leadership 331

C.2 Assignment 2: due Thursday, 2013-09-19, at 5:00 pm 332
C.2.1 Subsets . 332
C.2.2 A distributive law . 333
C.2.3 Exponents . 333

C.3 Assignment 3: due Thursday, 2013-09-26, at 5:00 pm 334
C.3.1 Surjections . 334
C.3.2 Proving an axiom the hard way 335
C.3.3 Squares and bigger squares 335

C.4 Assignment 4: due Thursday, 2013-10-03, at 5:00 pm 336
C.4.1 A fast-growing function 336
C.4.2 A slow-growing set . 337
C.4.3 Double factorials . 338

C.5 Assignment 5: due Thursday, 2013-10-10, at 5:00 pm 339
C.5.1 A bouncy function . 339
C.5.2 Least common multiples of greatest common divisors . 340
C.5.3 Adding and subtracting 341

C.6 Assignment 6: due Thursday, 2013-10-31, at 5:00 pm 341
C.6.1 Factorials mod n . 341
C.6.2 Indivisible and divisible 342
C.6.3 Equivalence relations 342

C.7 Assignment 7: due Thursday, 2013-11-07, at 5:00 pm 343
C.7.1 Flipping lattices with a function 343
C.7.2 Splitting graphs with a mountain 344
C.7.3 Drawing stars with modular arithmetic 344

C.8 Assignment 8: due Thursday, 2013-11-14, at 5:00 pm 347
C.8.1 Two-path graphs . 347
C.8.2 Even teams . 349

CONTENTS xiv

C.8.3 Inflected sequences . 350
C.9 Assignment 9: due Thursday, 2013-11-21, at 5:00 pm 351

C.9.1 Guessing the median 351
C.9.2 Two flushes . 352
C.9.3 Dice and more dice . 354

D Sample exams from Fall 2013 356
D.1 CS202 Exam 1, October 17th, 2013 356

D.1.1 A tautology (20 points) 356
D.1.2 A system of equations (20 points) 357
D.1.3 A sum of products (20 points) 357
D.1.4 A subset problem (20 points) 358

D.2 CS202 Exam 2, December 4th, 2013 358
D.2.1 Minimum elements (20 points) 359
D.2.2 Quantifiers (20 points) 359
D.2.3 Quadratic matrices (20 points) 359
D.2.4 Low-degree connected graphs (20 points) 361

E Midterm exams from earlier semesters 362
E.1 Midterm Exam, October 12th, 2005 362

E.1.1 A recurrence (20 points) 362
E.1.2 An induction proof (20 points) 363
E.1.3 Some binomial coefficients (20 points) 364
E.1.4 A probability problem (20 points) 364

E.2 Midterm Exam, October 24th, 2007 365
E.2.1 Dueling recurrences (20 points) 365
E.2.2 Seating arrangements (20 points) 365
E.2.3 Non-attacking rooks (20 points) 366
E.2.4 Subsets (20 points) . 367

E.3 Midterm Exam, October 24th, 2008 367
E.3.1 Some sums (20 points) 367
E.3.2 Nested ranks (20 points) 367
E.3.3 Nested sets (20 points) 368
E.3.4 An efficient grading method (20 points) 369

E.4 Midterm exam, October 21st, 2010 369
E.4.1 A partial order (20 points) 370
E.4.2 Big exponents (20 points) 370
E.4.3 At the playground (20 points) 370
E.4.4 Gauss strikes back (20 points) 371

CONTENTS xv

F Final exams from earlier semesters 372
F.1 CS202 Final Exam, December 15th, 2004 372

F.1.1 A multiplicative game (20 points) 372
F.1.2 An equivalence in space (20 points) 374
F.1.3 A very big fraction (20 points) 374
F.1.4 A pair of odd vertices (20 points) 375
F.1.5 How many magmas? (20 points) 375
F.1.6 A powerful relationship (20 points) 375
F.1.7 A group of archaeologists (20 points) 376

F.2 CS202 Final Exam, December 16th, 2005 376
F.2.1 Order (20 points) . 377
F.2.2 Count the subgroups (20 points) 377
F.2.3 Two exits (20 points) 377
F.2.4 Victory (20 points) . 378
F.2.5 An aggressive aquarium (20 points) 378
F.2.6 A subspace of matrices (20 points) 379

F.3 CS202 Final Exam, December 20th, 2007 380
F.3.1 A coin-flipping problem (20 points) 380
F.3.2 An ordered group (20 points) 381
F.3.3 Weighty vectors (20 points) 381
F.3.4 A dialectical problem (20 points) 382
F.3.5 A predictable pseudorandom generator (20 points) . . 383
F.3.6 At the robot factory (20 points) 384

F.4 CS202 Final Exam, December 19th, 2008 384
F.4.1 Some logical sets (20 points) 384
F.4.2 Modularity (20 points) 385
F.4.3 Coin flipping (20 points) 385
F.4.4 A transitive graph (20 points) 386
F.4.5 A possible matrix identity (20 points) 386

F.5 CS202 Final Exam, December 14th, 2010 387
F.5.1 Backwards and forwards (20 points) 387
F.5.2 Linear transformations (20 points) 388
F.5.3 Flipping coins (20 points) 389
F.5.4 Subtracting dice (20 points) 390
F.5.5 Scanning an array (20 points) 391

G How to write mathematics 392
G.1 By hand . 392
G.2 LATEX . 392
G.3 Microsoft Word equation editor 393

CONTENTS xvi

G.4 Google Docs equation editor 396
G.5 ASCII and/or Unicode art . 396
G.6 Markdown . 397

H Tools from calculus 398
H.1 Limits . 398
H.2 Derivatives . 400
H.3 Integrals . 402

I The natural numbers 405
I.1 The Peano axioms . 405
I.2 A simple proof . 407
I.3 Defining addition . 408

I.3.1 Other useful properties of addition 410
I.4 A scary induction proof involving even numbers 411
I.5 Defining more operations . 412

Bibliography 414

Index 417

List of Figures

8.1 Trace of extended Euclidean algorithm 121
8.2 Python code for extended Euclidean algorithm 122

9.1 A directed graph . 133
9.2 Relation as a directed graph 133
9.3 Factors of 12 partially ordered by divisibility 141
9.4 Maximal and minimal elements 142
9.5 Topological sort . 144
9.6 Reflexive, symmetric, and transitive closures 149
9.7 Strongly-connected components 150

10.1 A directed graph . 153
10.2 A graph . 154
10.3 Two representations of a hypergraph 155
10.4 Complete graphs K1 through K10 157
10.5 Cycle graphs C3 through C11 158
10.6 Path graphs P0 through P4 159
10.7 Complete bipartite graph K3,4 159
10.8 star graphs K1,3 through K1,8 160
10.9 Cayley graph of D4 . 160
10.10Two presentations of the cube graph Q3 161
10.11Subgraphs and minors . 162
10.12Cycles and closed walks . 166

13.1 Geometric interpretation of vector addition 258

C.1 Examples of Sm,k for Problem C.7.3 345
C.2 All 90 two-path graphs on five vertices 346

G.1 Source code for sample LATEX document. 394

xvii

LIST OF FIGURES xviii

G.2 Formatted sample LATEX document. 395

List of Tables

2.1 Compound propositions . 15
2.2 Common logical equivalences 20
2.3 Absorption laws . 22
2.4 Natural deduction: introduction and elimination rules 41
2.5 Natural deduction: introduction and elimination rules for

quantifiers . 43
2.6 Proof techniques . 47

3.1 Set comprehension vs list comprehension 54

4.1 Features of various standard algebras 82

8.1 Arithmetic in Z5 . 119
8.2 Multiplication table for Z9 . 125

H.1 Table of derivatives . 401
H.2 Table of integrals . 403

xix

List of Algorithms

xx

Preface

These are the notes for the Fall 2017 semester version of the Yale course
CPSC 202a, Mathematical Tools for Computer Science. They have been
subsequently updated to incorporate numerous corrections suggested by
Dana Angluin and her students. This document also incorporates the lecture
schedule and assignments, as well as some sample assignments from previous
semesters. Because this is a work in progress, it will be updated frequently
over the course of the semester.

The current version of these notes can be found at http://www.cs.yale.
edu/homes/aspnes/classes/202/notes.pdf. If this site is not available,
it may be possible to find a backup copy at https://www.dropbox.com/s/
pkatx4jpx58nm86/notes.pdf.

Notes from the 2013 version of the course can be found at http://www.
cs.yale.edu/homes/aspnes/classes/202/notes-2013.pdf.

xxi

http://www.cs.yale.edu/homes/aspnes/classes/202/notes.pdf
http://www.cs.yale.edu/homes/aspnes/classes/202/notes.pdf
https://www.dropbox.com/s/pkatx4jpx58nm86/notes.pdf
https://www.dropbox.com/s/pkatx4jpx58nm86/notes.pdf
http://www.cs.yale.edu/homes/aspnes/classes/202/notes-2013.pdf
http://www.cs.yale.edu/homes/aspnes/classes/202/notes-2013.pdf

Syllabus

Description
Introduction to formal methods for reasoning and to mathematical tech-
niques basic to computer science. Topics include propositional logic, discrete
mathematics, and linear algebra. Emphasis on applications to computer
science: recurrences, sorting, graph traversal, Gaussian elimination.

Meeting times
Lectures are Tuesdays and Thursdays from 1:00 pm to 2:15 pm in SPL 59.

On-line course information
The lecture schedule, course notes, and all assignments can be found in a
single gigantic PDF file at http://cs.yale.edu/homes/aspnes/classes/
202/notes.pdf. You should probably bookmark this file, as it will be
updated frequently.

Office hours and other information can be found in the instructor’s
teaching calendar at http://www.cs.yale.edu/homes/aspnes/#calendar.

Staff
If you can’t make the open office hours listed in the course calendar, you
may be able to schedule appointments at other times by email.

Instructor

• James Aspnes. Office: AKW 401. Email: james.aspnes@gmail.com.

xxii

http://cs.yale.edu/homes/aspnes/classes/202/notes.pdf
http://cs.yale.edu/homes/aspnes/classes/202/notes.pdf
http://www.cs.yale.edu/homes/aspnes/#calendar
mailto:james.aspnes@gmail.com

SYLLABUS xxiii

Teaching fellow

• Allison Walker allison.walker@yale.edu.

Peer tutors

• Elaine Hou elaine.hou@yale.edu.

• Andrew Jin andrew.jin@yale.edu.

• Sen Huang sen.huang@yale.edu.

• Clark Xie clark.xie@yale.edu.

• Anton Xue anton.xue@yale.edu.

Undergraduate course graders

• Maya Jeyendran maya.jeyendran@yale.edu.

• Ngan Vu ngan.vu@yale.edu.

• Hui Yang hui.yang@yale.edu.

Textbook
The main text for the course will be the lecture notes, available at http:
//cs.yale.edu/homes/aspnes/classes/202/notes.pdf.

Course requirements
Ten weekly homework assignments and two exams held at the regular lecture
time. The exams will count for approximately three homework assignments
each.

Use of outside help
Students are free to discuss homework problems and course material with
each other, and to consult with the instructor or a TA. Solutions handed in,
however, should be the student’s own work. If a student benefits substantially
from hints or solutions received from fellow students or from outside sources,
then the student should hand in their solution but acknowledge the outside

mailto:allison.walker@yale.edu
mailto:elaine.hou@yale.edu
mailto:andrew.jin@yale.edu
mailto:sen.huang@yale.edu
mailto:clark.xie@yale.edu
mailto:anton.xue@yale.edu
mailto:maya.jeyendran@yale.edu
mailto:ngan.vu@yale.edu
mailto:hui.yang@yale.edu
http://cs.yale.edu/homes/aspnes/classes/202/notes.pdf
http://cs.yale.edu/homes/aspnes/classes/202/notes.pdf

SYLLABUS xxiv

sources, and we will apportion credit accordingly. Using outside resources in
solving a problem is acceptable but plagiarism is not.

Questions and comments
Please feel free to send questions or comments on the class or anything
connected to it to the instructor at james.aspnes@gmail.com.

For questions about assignments, you may be able to get a faster response
using Piazza, at http://piazza.com/yale/fall2017/cpsc202. Note that
questions you ask there are visible to other students if not specifically marked
private, so be careful about broadcasting your draft solutions.

Late assignments
Late assignments will not be accepted without a Dean’s Excuse.

Topics
The course will cover the minimal topics in mathematics that you will need
to survive the Computer Science major. We assume that coming in to the
course you will already have a thorough grounding in high school algebra,
but may or may not have taken any other math classes. By the end of the
course, you should:

• Understand definitions and proofs, including quantifiers and induction.

• Understand basic set theory and set-theoretic notation.

• Be comfortable with manipulating commonly-used functions like expo-
nentials and logarithms.

• Know how to count (not as easy as you think).

• Understand asymptotic notation.

• Know how to solve recurrences.

• Understand basic probability.

• Have a passing familiarity with standard mathematical concepts that
show up in computer science, including graphs, algebraic structures

mailto:james.aspnes@gmail.com
http://piazza.com/yale/fall2017/cpsc202

SYLLABUS xxv

(e.g., groups, rings, and fields), linear algebra and matrices, and basic
number theory.

Because CS202 is only a one-semester course, coverage of most topics
will necessarily be rather sketchy. If you expect to do further work in the
theoretical end of computer science or in math-intensive fields like graphics,
vision, neural networks, robotics, or scientific computation, you should plan
to take further courses in mathematics (a serious linear algebra course is
particularly recommended). One of the goals of CS202 is to provide you with
the mathematical maturity you will need to profit from such courses.

Resources

In addition to these notes, you may find many other resources useful.

Reserved books at Bass Library
• Kevin Ferland. Discrete Mathematics. Cengage Learning, 2008. ISBN
978-0618415380. [Fer08]

• Kenneth H. Rosen. Discrete Mathematics and Its Applications, Seventh
Edition, McGraw-Hill, 2012. ISBN 978-0072899054. QA39.3 R67 2012
(LC). [Ros12]

• Norman L. Biggs. Discrete Mathematics, second edition. Oxford Uni-
versity Press, 2002. ISBN 0198507178. QA76.9 M35 B54 2002. [Big02]

• Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
Mathematics: A Foundation for Computer Science. Addison-Wesley,
1989. QA39.2 G733X 1989. [GKP94]

• George Polya. How to Solve It: A New Aspect of Mathematical Method.
Princeton University Press, 2004. QA11 .P66 2004 (LC). [Pol04]

• Daniel Solow. How to Read and Do Proofs: An Introduction to
Mathematical Thought Processes. Wiley, 2005. QA9.54 .S65X 2005
(LC) [Sol05]

xxvi

Internet resources

PlanetMath http://planetmath.org

Wolfram MathWorld http://mathworld.wolfram.com

WikiPedia http://en.wikipedia.org

Google http://www.google.com

xxvii

http://planetmath.org
http://mathworld.wolfram.com
http://en.wikipedia.org
http://www.google.com

Lecture schedule

As always, the future is uncertain, so you should take parts of the schedule
that haven’t happened yet with a grain of salt. Readings refer to chapters or
sections in the course notes. You can also find lecture times, office hours for
the instructor and teaching staff, and assignment due dates in James Aspnes’s
teaching calendar at http://www.cs.yale.edu/homes/aspnes/#calendar.

2017-08-31 Overview of the course. Start of mathematical logic: basic
principles and propositional logic. Boolean operators, truth tables,
tautologies, and logical equivalence. Readings: Chapter 1, §§2.1–2.2;

2017-09-05 More propositional logic: simplifying expressions using standard
equivalences. Conjunctive and disjunctive normal forms. Predicate
logic: constants, predicates, variables and quantifiers. Nested quanti-
fiers at the playground and the subtle but important difference between
∃x : ∀y : likes(y, x) and ∀y : ∃x : likes(y, x). Readings: §2.3 through
§2.3.2.

2017-09-07 More predicate logic: Function symbols and equality. Models
in predicate logic. Proofs and inference rules. Readings: §§2.3.3–2.4.2.

2017-09-12 Proof techniques. Examples of proofs. Writing proofs in con-
densed form. Readings: §§2.5–2.6.

2017-09-14 Start of sets: set notation, basic operations on sets, examples
of set-theory axioms. Readings: §§3.1–3.4.

2017-09-19 More set theory: Cartesian products, relations, and functions.
Sequences as functions. Composition of functions. Injection, surjec-
tions, and bijections. Readings: §§3.5–3.5.5.

2017-09-21 Size of sets. Infinite sets. Countable and uncountable sets.
Representing numbers in set theory. Readings: §§3.6–3.7.

xxviii

http://www.cs.yale.edu/homes/aspnes/#calendar

LECTURE SCHEDULE xxix

2017-09-26 The real numbers and their properties, with a bit of algebra.
Readings: Chapter 4.

2017-09-28 Induction and recursion. Readings: §§5.1–5.5.

2017-10-03 Summation notation. Readings: §§6.1–6.3.

2017-10-05 Closed-form solutions to summations. Asymptotic notation.
Readings: §6.4, Chapter 7.

2017-10-10 Number theory: divisibility, modular arithmetic, and greatest
common divisors. Readings: §§8.1–8.4.1.

2017-10-12 More number theory: the extended Euclidean algorithm, in-
verses mod m, and the Fundamental Theorem of Arithmetic. Readings:
§§8.4.2–8.5.

2017-10-17 Exam 1. The first exam was given at the usual class time in
SSS 114. It was be a closed-book exam covering all material discussed
up to this point. The exam, with sample solutions, can be found in
Appendix B.1.

2017-10-24 The Chinese Remainder Theorem, Euler’s Theorem, and RSA
encryption. Readings: §§8.6.2–8.7.

2017-10-26 Relations, digraphs, and matrices. Equivalence relations. Start
of partial orders. Readings: Chapter 9 through §9.5.1.

2017-10-31 Various kinds of partial orders, including total orders, well
orders, and lattices. Strict partial orders. Minimal, minimum, maximal,
and maximum elements of a partial order. Joins and meets. Topological
sort. Readings: Rest of §9.5.

2017-11-02 Reflexive, symmetric, and transitive closures. Strongly-connected
components and pre-orders. Start of graph theory. Readings: §9.6,
Chapter 10 through §10.4.

2017-11-07 More graph theory: graph embeddings; paths, cycles, and con-
nectivity; proving things about graphs. Readings: Rest of Chapter 10.

2017-11-09 Basic counting principles: Equality by direct bijection or ≤
plus ≥; the sum rule; subtraction and inclusion-exclusion for two sets;
the product rule; exponentiation and variants (nk, (n)k); division and
binomial coefficients

(n
k

)
. Readings: §11.1.

LECTURE SCHEDULE xxx

2017-11-14 Binomial coefficients and the binomial theorem: Pascal’s trian-
gle identity, symmetry, Vandermonde’s identity. Basics of generating
functions. Readings: §11.2 and §11.3 through §11.3.4.3; introduction
to §11.3.6.

2017-11-16 Discrete probability theory: probability spaces, events, and
conditional probability. Readings: §12.1.

2017-11-28 More probability theory: random variables and expectations.
Readings: §12.2 through §12.2.5.

2017-11-30 Linear algebra: vector and matrix operations. Computing
matrix inverses using Gauss-Jordan elimination. Readings: §§13.1–13.3.

2017-12-05 More linear algebra: Vectors as matrices. Dot products, linear
combinations, and linear transformations. Readings: §§13.4–13.7.

2017-12-07 Exam 2. The second exam was given at the usual class time
in SSS 114. It was a closed-book exam covering all material discussed
during the semester. The exam, with sample solutions, can be found
in Appendix B.2.

Chapter 1

Introduction

This is a course on discrete mathematics as used in Computer Science. It’s
only a one-semester course, so there are a lot of topics that it doesn’t cover
or doesn’t cover in much depth. But the hope is that this will give you a
foundation of skills that you can build on as you need to, and particularly
to give you a bit of mathematical maturity—the basic understanding of
what mathematics is and how mathematical definitions and proofs work.

1.1 So why do I need to learn all this nasty math-
ematics?

Why you should know about mathematics, if you are interested in Computer
Science: or, more specifically, why you should take CS202 or a comparable
course:
• Computation is something that you can’t see and can’t touch, and yet
(thanks to the efforts of generations of hardware engineers) it obeys
strict, well-defined rules with astonishing accuracy over long periods of
time.

• Computations are too big for you to comprehend all at once. Imagine
printing out an execution trace that showed every operation a typical
$500 desktop computer executed in one (1) second. If you could read
one operation per second, for eight hours every day, you would die
of old age before you got halfway through. Now imagine letting the
computer run overnight.

So in order to understand computations, we need a language that allows
us to reason about things we can’t see and can’t touch, that are too big

1

CHAPTER 1. INTRODUCTION 2

for us to understand, but that nonetheless follow strict, simple, well-defined
rules. We’d like our reasoning to be consistent: any two people using the
language should (barring errors) obtain the same conclusions from the same
information. Computer scientists are good at inventing languages, so we
could invent a new one for this particular purpose, but we don’t have to:
the exact same problem has been vexing philosophers, theologians, and
mathematicians for much longer than computers have been around, and
they’ve had a lot of time to think about how to make such a language work.
Philosophers and theologians are still working on the consistency part, but
mathematicians (mostly) got it in the early 20th-century. Because the first
virtue of a computer scientist is laziness, we are going to steal their code.

1.2 But isn’t math hard?
Yes and no. The human brain is not really designed to do formal mathematical
reasoning, which is why most mathematics was invented in the last few
centuries and why even apparently simple things like learning how to count
or add require years of training, usually done at an early age so the pain
will be forgotten later. But mathematical reasoning is very close to legal
reasoning, which we do seem to be very good at.1

There is very little structural difference between the two sentences:

1. If x is in S, then x+ 1 is in S.

2. If x is of royal blood, then x’s child is of royal blood.

But because the first is about boring numbers and the second is about
fascinating social relationships and rules, most people have a much easier
time deducing that to show somebody is royal we need to start with some
known royal and follow a chain of descendants than they have deducing that
to show that some number is in the set S we need to start with some known
element of S and show that repeatedly adding 1 gets us to the number we
want. And yet to a logician these are the same processes of reasoning.

So why is statement (1) trickier to think about than statement (1)? Part
of the difference is familiarity—we are all taught from an early age what it
means to be somebody’s child, to take on a particular social role, etc. For
mathematical concepts, this familiarity comes with exposure and practice,
just as with learning any other language. But part of the difference is that

1For a description of some classic experiments that demonstrate this, see http://en.
wikipedia.org/wiki/Wason_selection_task.

http://en.wikipedia.org/wiki/Wason_selection_task
http://en.wikipedia.org/wiki/Wason_selection_task

CHAPTER 1. INTRODUCTION 3

we humans are wired to understand and appreciate social and legal rules:
we are very good at figuring out the implications of a (hypothetical) rule
that says that any contract to sell a good to a consumer for $100 or more
can be canceled by the consumer within 72 hours of signing it provided the
good has not yet been delivered, but we are not so good at figuring out the
implications of a rule that says that a number is composite if and only if it
is the product of two integer factors neither of which is 1. It’s a lot easier to
imagine having to cancel a contract to buy swampland in Florida that you
signed last night while drunk than having to prove that 82 is composite. But
again: there is nothing more natural about contracts than about numbers,
and if anything the conditions for our contract to be breakable are more
complicated than the conditions for a number to be composite.

1.3 Thinking about math with your heart
There are two things you need to be able to do to get good at mathematics
(the creative kind that involves writing proofs, not the mechanical kind that
involves grinding out answers according to formulas). One of them is to learn
the language: to attain what mathematicians call mathematical maturity.
You’ll do that in CS202, if you pay attention. But the other is to learn
how to activate the parts of your brain that are good at mathematical-style
reasoning when you do math—the parts evolved to detect when the other
primates in your band of hunter-gatherers are cheating.

To do this it helps to get a little angry, and imagine that finishing a proof
or unraveling a definition is the only thing that will stop your worst enemy
from taking some valuable prize that you deserve. (If you don’t have a worst
enemy, there is always the universal quantifier.) But whatever motivation
you choose, you need to be fully engaged in what you are doing. Your brain
is smart enough to know when you don’t care about something, and if you
don’t believe that thinking about math is important, it will think about
something else.

1.4 What you should know about math
We won’t be able to cover all of this, but the list below might be a minimal
set of topics it would be helpful to understand for computer science. Topics
that we didn’t do this semester are marked with (*).

CHAPTER 1. INTRODUCTION 4

1.4.1 Foundations and logic

Why: This is the assembly language of mathematics—the stuff at the bottom
that everything else compiles to.

• Propositional logic.

• Predicate logic.

• Axioms, theories, and models.

• Proofs.

• Induction and recursion.

1.4.2 Basic mathematics on the real numbers

Why: You need to be able to understand, write, and prove equations and
inequalities involving real numbers.

• Standard functions and their properties: addition, multiplication, ex-
ponentiation, logarithms.

• More specialized functions that come up in algorithm analysis: floor,
ceiling, max, min.

• Techniques for proving inequalities, including:

– General inequality axioms (transitivity, anti-symmetry, etc.)
– Inequality axioms for R (i.e., how < interacts with addition,

multiplication, etc.)
– Techniques involving derivatives (assumes calculus) (*):
∗ Finding local extrema of f by solving for f ′(x) = 0. (*)
∗ Using f ′′ to distinguish local minima from local maxima. (*)
∗ Using f ′(x) ≤ g′(x) in [a, b] and f(a) ≤ g(a) or f(b) ≤ g(b)
to show f(x) ≤ g(x) in [a, b]. (*)

• Special subsets of the real number: rationals, integers, natural numbers.

CHAPTER 1. INTRODUCTION 5

1.4.3 Fundamental mathematical objects

Why: These are the mathematical equivalent of data structures, the way
that more complex objects are represented.

• Set theory.

– Naive set theory.
– Predicates vs sets.
– Set operations.
– Set comprehension.
– Russell’s paradox and axiomatic set theory.

• Functions.

– Functions as sets.
– Injections, surjections, and bijections.
– Cardinality.
– Finite vs infinite sets.
– Sequences.

• Relations.

– Equivalence relations. Equivalence classes and quotients.
– Orders: total orders, partial orders, lattics, and well orders. Order

types and ordinals.

• The basic number tower.

– Countable universes: N,Z,Q. (Can be represented in a computer.)
– Uncountable universes: R,C. (Can only be approximated in a

computer.)

• Other algebras.

– The string monoid. (*)
– Zm and Zp.
– Polynomials over various rings and fields.

CHAPTER 1. INTRODUCTION 6

1.4.4 Modular arithmetic and polynomials

Why: Basis of modern cryptography.

• Arithmetic in Zm.

• Primes and divisibility.

• Euclid’s algorithm and inverses.

• The Chinese Remainder Theorem.

• Fermat’s Little Theorem and Euler’s Theorem.

• RSA encryption.

• Galois fields and applications.

1.4.5 Linear algebra

Why: Shows up everywhere.

• Vectors and matrices.

• Matrix operations and matrix algebra.

• Inverse matrices and Gaussian elimination.

• Geometric interpretations.

1.4.6 Graphs

Why: Good for modeling interactions. Basic tool for algorithm design.

• Definitions: graphs, digraphs, multigraphs, etc.

• Paths, connected components, and strongly-connected components.

• Special kinds of graphs: paths, cycles, trees, cliques, bipartite graphs.

• Subgraphs, induced subgraphs, minors.

CHAPTER 1. INTRODUCTION 7

1.4.7 Counting

Why: Basic tool for knowing what resources your program is going to
consume.

• Basic combinatorial counting: sums, products, exponents, differences,
and quotients.

• Combinatorial functions.

– Factorials.
– Binomial coefficients.
– The 12-fold way. (*)

• Advanced counting techniques.

– Inclusion-exclusion.
– Recurrences. (*)
– Generating functions. (Limited coverage.)

1.4.8 Probability

Why: Can’t understand randomized algorithms or average-case analysis
without it. Handy if you go to Vegas.

• Discrete probability spaces.

• Events.

• Independence.

• Random variables.

• Expectation and variance.

• Probabilistic inequalities.

– Markov’s inequality.
– Chebyshev’s inequality. (*)
– Chernoff bounds. (*)

• Stochastic processes. (*)

– Markov chains. (*)
– Martingales. (*)
– Branching processes. (*)

CHAPTER 1. INTRODUCTION 8

1.4.9 Tools

Why: Basic computational stuff that comes up, but doesn’t fit in any of the
broad categories above. These topics will probably end up being mixed in
with the topics above.

• Things you may have forgotten about exponents and logarithms. (*)

• Inequalities and approximations.

•
∑

and
∏

notation.

• How to differentiate and integrate simple functions. (*)

• Computing or approximating the value of a sum.

• Asymptotic notation.

Chapter 2

Mathematical logic

Mathematical logic is the discipline that mathematicians invented in the late
nineteenth and early twentieth centuries so they could stop talking nonsense.
It’s the most powerful tool we have for reasoning about things that we can’t
really comprehend, which makes it a perfect tool for Computer Science.

2.1 The basic picture
Reality Model Theory
herds of sheep
piles of rocks → N = {0, 1, 2, . . .} → ∀x : ∃y : y = x+ 1
tally marks

We want to model something we see in reality with something we can fit
in our heads. Ideally we drop most of the features of the real thing that we
don’t care about and keep the parts that we do care about. But there is a
second problem: if our model is very big (and the natural numbers are very
very big), how do we know what we can say about them?

2.1.1 Axioms, models, and inference rules

One approach is to come up with a list of axioms that are true statements
about the model and a list of inference rules that let us derive new true
statements from the axioms. The axioms and inference rules together generate
a theory that consists of all statements that can be constructed from the
axioms by applying the inference rules. The rules of the game are that we
can’t claim that some statement is true unless it’s a theorem: something
we can derive as part of the theory.

9

CHAPTER 2. MATHEMATICAL LOGIC 10

Simple example: All fish are green (axiom). George Washington is a
fish (axiom). From “all X are Y ” and “Z is X”, we can derive “Z is Y ”
(inference rule). Thus George Washington is green (theorem). Since we can’t
do anything else with our two axioms and one inference rule, these three
statements together form our entire theory about George Washington, fish,
and greenness.

Theories are attempts to describe models. A model is typically a
collection of objects and relations between them. For a given theory, there
may be many models that are consistent with it: for example, a model that
includes both green fishy George Washington and MC 900-foot Abraham
Lincoln is consistent with the theory above, because the theory doesn’t say
anything about Abraham Lincoln.

2.1.2 Consistency

A theory is consistent if it can’t prove both P and not-P for any P .
Consistency is incredibly important, since all the logics people actually use
can prove anything if you start with P and not-P .

2.1.3 What can go wrong

If we throw in too many axioms, you can get an inconsistency: “All fish are
green; all sharks are not green; all sharks are fish; George Washington is a
shark” gets us into trouble pretty fast.

If we don’t throw in enough axioms, we underconstrain the model. For
example, the Peano axioms for the natural numbers (see example below) say
(among other things) that there is a number 0 and that any number x has a
successor S(x) (think of S(x) as x+ 1). If we stop there, we might have a
model that contains only 0, with S(0) = 0. If we add in 0 6= S(x) for any
x, then we can get stuck at S(0) = 1 = S(1). If we add yet another axiom
that says S(x) = S(y) if and only if x = y, then we get all the ordinary
natural numbers 0, S(0) = 1, S(1) = 2, etc., but we could also get some
extras: say 0′, S(0′) = 1′, S(1′) = 0′. Characterizing the “correct” natural
numbers historically took a lot of work to get right, even though we all know
what we mean when we talk about them. The situation is of course worse
when we are dealing with objects that we don’t really understand; here the
most we can hope for is to try out some axioms and see if anything strange
happens.

Better yet is to use some canned axioms somebody else has already
debugged for us. In this respect the core of mathematics acts like a system

CHAPTER 2. MATHEMATICAL LOGIC 11

library—it’s a collection of useful structures and objects that are known to
work, and (if we are lucky) may even do exactly what we expect.

2.1.4 The language of logic

The basis of mathematical logic is propositional logic, which was essentially
invented by Aristotle. Here the model is a collection of statements that are
either true or false. There is no ability to refer to actual things; though we
might include the statement “George Washington is a fish”, from the point
of view of propositional logic that is an indivisible atomic chunk of truth
or falsehood that says nothing in particular about George Washington or
fish. If we treat it as an axiom we can prove the truth of more complicated
statements like “George Washington is a fish or 2+2=5” (true since the first
part is true), but we can’t really deduce much else. Still, this is a starting
point.

If we want to talk about things and their properties, we must upgrade
to predicate logic. Predicate logic adds both constants (stand-ins for
objects in the model like “George Washington”) and predicates (stand-ins
for properties like “is a fish”). It also lets us quantify over variables and
make universal statements like “For all x, if x is a fish then x is green.” As
a bonus, we usually get functions (“f(x) = the number of books George
Washington owns about x”) and equality (“George Washington = 12” implies
“George Washington + 5 = 17”). This is enough machinery to define and do
pretty much all of modern mathematics.

We will discuss both of these logics in more detail below.

2.1.5 Standard axiom systems and models

Rather than define our own axiom systems and models from scratch, it helps
to use ones that already have a track record of consistency and usefulness.
Almost all mathematics fits in one of the following models:

• The natural numbers N. These are defined using the Peano axioms,
and if all you want to do is count, add, and multiply, you don’t need
much else. (If you want to subtract, things get messy.)

• The integers Z. Like the naturals, only now we can subtract. Division
is still a problem.

• The rational numbers Q. Now we can divide. But what about
√

2?

• The real numbers R. Now we have
√

2. But what about
√

(−1)?

CHAPTER 2. MATHEMATICAL LOGIC 12

• The complex numbers C. Now we are pretty much done. But what if
we want to talk about more than one complex number at a time?

• The universe of sets. These are defined using the axioms of set the-
ory, and produce a rich collection of sets that include, among other
things, structures equivalent to the natural numbers, the real numbers,
collections of same, sets so big that we can’t even begin to imagine
what they look like, and even bigger sets so big that we can’t use the
usual accepted system of axioms to prove whether they exist or not.
Fortunately, in computer science we can mostly stop with finite sets,
which makes life less confusing.

• Various alternatives to set theory, like lambda calculus, category theory,
or second-order arithmetic. We won’t talk about these, since they
generally don’t let you do anything you can’t do already with sets.
However, lambda calculus and category theory are both important to
know about if you are interested in programming language theory.

In practice, the usual way to do things is to start with sets and then define
everything else in terms of sets: e.g., 0 is the empty set, 1 is a particular set
with 1 element, 2 a set with 2 elements, etc., and from here we work our way
up to the fancier numbers. The idea is that if we trust our axioms for sets
to be consistent, then the things we construct on top of them should also be
consistent, although if we are not careful in our definitions they may not be
exactly the things we think they are.

2.2 Propositional logic
Propositional logic is the simplest form of logic. Here the only statements
that are considered are propositions, which contain no variables. Because
propositions contain no variables, they are either always true or always false.

Examples of propositions:

• 2 + 2 = 4. (Always true).

• 2 + 2 = 5. (Always false).

Examples of non-propositions:

• x+ 2 = 4. (May be true, may not be true; it depends on the value of
x.)

CHAPTER 2. MATHEMATICAL LOGIC 13

• x · 0 = 0. (Always true, but it’s still not a proposition because of the
variable.)

• x · 0 = 1. (Always false, but not a proposition because of the variable.)

As the last two examples show, it is not enough for a statement to be
always true or always false—whether a statement is a proposition or not is
a structural property. But if a statement doesn’t contain any variables (or
other undefined terms), it is a proposition, and as a side-effect of being a
proposition it’s always true or always false.

2.2.1 Operations on propositions

Propositions by themselves are pretty boring. So boring, in fact, that
logicians quickly stop talking about specific propositions and instead haul
out placeholder names like p, q, or r. But we can build slightly more
interesting propositions by combining propositions together using various
logical connectives, such as:

Negation The negation of p is written as ¬p, or sometimes ∼p, −p or p.
It has the property that it is false when p is true, and true when p is
false.

Or The or of two propositions p and q is written as p ∨ q, and is true as
long as at least one, or possibly both, of p and q is true.1 This is not
always the same as what “or” means in English; in English, “or” often
is used for exclusive or which is not true if both p and q are true. For
example, if someone says “You will give me all your money or I will
stab you with this table knife”, you would be justifiably upset if you
turn over all your money and still get stabbed. But a logician would
not be at all surprised, because the standard “or” in propositional logic
is an inclusive or that allows for both outcomes.

Exclusive or If you want to exclude the possibility that both p and q are
true, you can use exclusive or instead. This is written as p⊕ q, and
is true precisely when exactly one of p or q is true. Exclusive or is
not used in classical logic much, but is important for many computing
applications, since it corresponds to addition modulo 2 (see §8.3) and

1The symbol ∨ is a stylized V, intended to represent the Latin word vel, meaning “or.”
(Thanks to Noel McDermott for remembering this.) Much of this notation is actually pretty
recent (early 20th century): see http://jeff560.tripod.com/set.html for a summary of
earliest uses of each symbol.

http://jeff560.tripod.com/set.html

CHAPTER 2. MATHEMATICAL LOGIC 14

has nice reversibility properties (e.g. p⊕ (p⊕ q) always has the same
truth-value as q).

And The and of p and q is written as p ∧ q, and is true only when both p
and q are true.2 This is pretty much the same as in English, where “I
like to eat ice cream and I own a private Caribbean island” is not a
true statement when made by most people even though most people
like to eat ice cream. The only complication in translating English
expressions into logical ands is that logicians can’t tell the difference
between “and” and “but”: the statement “2 + 2 = 4 but 3 + 3 = 6”
becomes simply “(2 + 2 = 4) ∧ (3 + 3 = 6).”

Implication This is the most important connective for proofs. An impli-
cation represents an “if. . . then” claim. If p implies q, then we write
p → q or p ⇒ q, depending on our typographic convention and the
availability of arrow symbols in our favorite font. In English, p → q
is usually rendered as “If p, then q,” as in “If you step on your own
head, it will hurt.” The meaning of p→ q is that q is true whenever
p is true, and the proposition p→ q is true provided (a) p is false (in
which case all bets are off), or (b) q is true.
In fact, the only way for p→ q to be false is for p to be true but q to
be false. Because of this, p → q can be rewritten as ¬p ∨ q. So, for
example, the statements “If 2 + 2 = 5, then I’m the Pope”, “If I’m the
Pope, then 2 + 2 = 4”, and “If 2 + 2 = 4, then 3 + 3 = 6”, are all true,
provided the if/then is interpreted as implication.
Normal English usage does not always match this pattern. Instead,
if/then in normal speech is often interpreted as the much stronger
biconditional (see below), and often carries connotations of causality.
So if I say—entirely truthfully—“If the moon is made of green cheese,
then the world will end at midnight,” my listeners will think I have
some mechanism in mind by which a green-cheese moon will end the
world. But all I am doing is taking advantage of my knowledge that
the moon is not made of green cheese to make a statement that is
trivially true, because it has a false premise. This is another example
of how the language of logic strips away the vast cloud of secondary
messages and hidden assumptions carried by ordinary speech, perhaps
the most important of which is the assumption that if I say something,
it should mean something, and not just be a formal exercise in symbol
manipulation.

2The symbol ∧ is a stylized A, short for the latin word atque, meaning “and also.”

CHAPTER 2. MATHEMATICAL LOGIC 15

NOT p ¬p p,∼p
p AND q p ∧ q
p XOR q p⊕ q
p OR q p ∨ q

p implies q p→ q p⇒ q, p ⊃ q
p if and only if q p↔ q p⇔ q

Table 2.1: Compound propositions. The rightmost column gives alternate
forms. Precedence goes from strongest for ¬ to weakest for ↔ (but see
§2.2.1.1 for a discussion of variation in conventions for this).

Biconditional Suppose that p → q and q → p, so that either both p and
q are true or both p and q are false. In this case, we write p ↔ q
or p ⇔ q, and say that p holds if and only if q holds. The truth
of p ↔ q is still just a function of the truth or falsehood of p and q;
though there doesn’t need to be any connection between the two sides
of the statement, “2 + 2 = 5 if and only if I am the Pope” is a true
statement (provided it is not uttered by the Pope). The only way for
p↔ q to be false is for one side to be true and one side to be false.

The result of applying any of these operations is called a compound
proposition.

Table 2.1 shows what all of this looks like when typeset nicely. Note that
in some cases there is more than one way to write a compound expression.
Which you choose is a matter of personal preference, but you should try to
be consistent.

2.2.1.1 Precedence

The short version: for the purposes of this course, we will use the ordering in
Table 2.1, which corresponds roughly to precedence in C-like programming
languages. But see caveats below. Remember always that there is no shame
in putting in a few extra parentheses if it makes a formula more clear.

Examples: (¬p ∨ q ∧ r → s ↔ t) is interpreted as ((((¬p) ∨ (q ∧ r)) →
s) ↔ t). Both OR and AND are associative, so (p ∨ q ∨ r) is the same as
((p ∨ q) ∨ r) and as (p ∨ (q ∨ r)), and similarly (p ∧ q ∧ r) is the same as
((p ∧ q) ∧ r) and as (p ∧ (q ∧ r)).

Note that this convention is not universal: many mathematicians give
AND and OR equal precedence, so that the meaning of p ∧ q ∨ r is ambigu-
ous without parentheses. There are good arguments for either convention.

CHAPTER 2. MATHEMATICAL LOGIC 16

Making AND have higher precedence than OR is analogous to giving multi-
plication higher precedence than addition, and makes sense visually when
AND is written multiplicatively (as in pq ∨ qr for (p ∧ q) ∨ (q ∧ r). Making
them have the same precedence emphasizes the symmetry between the two
operations, which we’ll see more about later when we talk about De Morgan’s
laws in §2.2.3. But as with anything else in mathematics, either convention
can be adopted, as long as you are clear about what you are doing and it
doesn’t cause annoyance to the particular community you are writing for.

There does not seem to be a standard convention for the precedence of
XOR, since logicians don’t use it much. There are plausible arguments for
putting XOR in between AND and OR, but it’s probably safest just to use
parentheses.

Implication is not associative, although the convention is that it binds
“to the right,” so that a → b → c is read as a → (b → c). Except for
type theorists and Haskell programmers, few people ever remember this,
so it is usually safest to put in the parentheses. I personally have no idea
what p↔ q ↔ r means, so any expression like this should be written with
parentheses as either (p↔ q)↔ r or p↔ (q ↔ r).

2.2.2 Truth tables

To define logical operations formally, we give a truth table. This gives, for
any combination of truth values (true or false, which as computer scientists
we often write as 1 or 0) of the inputs, the truth value of the output. In this
usage, truth tables are to logic what addition and multiplication tables are
to arithmetic.

Here is a truth table for negation:

p ¬p
0 1
1 0

And here is a truth table for the rest of the logical operators:

p q p ∨ q p⊕ q p ∧ q p→ q p↔ q
0 0 0 0 0 1 1
0 1 1 1 0 1 0
1 0 1 1 0 0 0
1 1 1 0 1 1 1

See also [Fer08, §1.1], [Ros12, §§1.1–1.2], or [Big02, §§3.1–3.3].

CHAPTER 2. MATHEMATICAL LOGIC 17

We can think of each row of a truth table as a model for propositional
logic, since the only things we can describe in propositional logic are whether
particular propositions are true or not. Constructing a truth table corre-
sponds to generating all possible models.

This can be useful if we want to figure out when a particular proposition
is true. Proving a proposition using a truth table is a simple version of
model checking: we enumerate all possible models of a given collection
of simple propositions, and see if what we want to prove holds in all models.
This works for propositional logic because the list of models is just the list
of possible combinations of truth values for all the simple propositions P ,
Q, etc. We can check that each truth table we construct works by checking
that the truth values each column (corresponding to some subexpression of
the thing we are trying to prove) follow from the truth values in previous
columns according to the rules established by the truth table defining the
appropriate logical operation.

For predicate logic, model checking becomes more complicated, because
a typical system of axioms is likely to have infinitely many models, many of
which are likely to be infinitely large. There we will need to rely much more
on proofs constructed by applying inference rules.

2.2.3 Tautologies and logical equivalence

A compound proposition that is true no matter what the truth-values of the
propositions it contains is called a tautology. For example, p→ p, p ∨ ¬p,
and ¬(p ∧ ¬p) are all tautologies, as can be verified by constructing truth
tables. If a compound proposition is always false, it’s a contradiction. The
negation of a tautology is a contradiction and vice versa.

The most useful class of tautologies are logical equivalences. This is a
tautology of the form X ↔ Y , where X and Y are compound propositions.
In this case, X and Y are said to be logically equivalent and we can
substitute one for the other in more complex propositions. We write X ≡ Y
if X and Y are logically equivalent.

The nice thing about logical equivalence is that is does the same thing for
Boolean formulas that equality does for algebraic formulas: if we know (for
example), that p ∨ ¬p is equivalent to 1, and q ∨ 1 is equivalent to 1, we can
grind q∨p∨¬p ≡ q∨1 ≡ 1 without having to do anything particularly clever.
(We will need cleverness later when we prove things where the consequent
isn’t logically equivalent to the premise.)

To prove a logical equivalence, one either constructs a truth table to show
that X ↔ Y is a tautology, or transforms X to Y using previously-known

CHAPTER 2. MATHEMATICAL LOGIC 18

logical equivalences.
Some examples:
• p ∧ ¬p ≡ 0: Construct a truth table

p ¬p p ∧ ¬p 0
0 1 0 0
1 0 0 0

and observe that the last two columns are always equal.

• p ∨ p ≡ p: Use the truth table
p p ∨ p
0 0
1 1

• p→ q ≡ ¬p ∨ q: Again construct a truth table
p q p→ q ¬p ∨ q
0 0 1 1
0 1 1 1
1 0 0 0
1 1 1 1

• ¬(p ∨ q) ≡ ¬p ∧ ¬q: (one of De Morgan’s laws; the other is ¬(p ∧ q) ≡
¬p ∨ ¬q).

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q
0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

• p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) (one of the distributive laws; the other is
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)).

p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1

CHAPTER 2. MATHEMATICAL LOGIC 19

• (p → r) ∨ (q → r) ≡ (p ∧ q) → r. Now things are getting messy,
so building a full truth table may take a while. But we have take a
shortcut by using logical equivalences that we’ve already proved (plus
associativity of ∨):

(p→ r) ∨ (q → r) ≡ (¬p ∨ r) ∨ (¬q ∨ r) [Using p→ q ≡ ¬p ∨ q twice]
≡ ¬p ∨ ¬q ∨ r ∨ r [Associativity and commutativity of ∨]
≡ ¬p ∨ ¬q ∨ r [p ≡ p ∨ p]
≡ ¬(p ∧ q) ∨ r [De Morgan’s law]
≡ (p ∧ q)→ r. [p→ q ≡ ¬p ∨ q]

This last equivalence is a little surprising. It shows, for example, that
if somebody says “It is either the case that if you study you will graduate
from Yale with distinction, or that if you join the right secret society you
will graduate from Yale with distinction”, then this statement (assuming
we treat the or as ∨) is logically equivalent to “If you study and join the
right secret society, then you will graduate from Yale with distinction.” It is
easy to get tangled up in trying to parse the first of these two propositions;
translating to logical notation and simplifying using logical equivalence is a
good way to simplify it.

Over the years, logicians have given names to many logical equivalences.
Some of the more useful ones are summarized in Table 2.2. More complicated
equivalences can often be derived from these. If that doesn’t work (and you
don’t have too many variables to work with), you can always try writing out
a truth table.

2.2.3.1 Inverses, converses, and contrapositives

The contrapositive of p → q is ¬q → ¬p; it is logically equivalent to the
original implication. For example, the contrapositive of “If I am human
then I am a mammal” is “If I am not a mammal then I am not human”. A
proof by contraposition demonstrates that p implies q by assuming ¬q
and then proving ¬p; it is similar but not identical to an indirect proof ,
which assumes ¬p and derives a contradiction.

The inverse of p→ q is ¬p→ ¬q. So the inverse of “If you take CPSC
202, you will surely die” is “If you do not take CPSC 202, you will not surely
die.” There is often no connection between the truth of an implication and
the truth of its inverse: “If I am human then I am a mammal” does not
have the same truth-value as “If I am not human then I am not a mammal,”
barring some over-the-top ecological disaster.

CHAPTER 2. MATHEMATICAL LOGIC 20

¬¬p ≡ p Double negation
¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s law
¬(p ∨ q) ≡ ¬p ∧ ¬q De Morgan’s law

p ∧ q ≡ q ∧ p Commutativity of AND
p ∨ q ≡ q ∨ p Commutativity of OR

p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r Associativity of AND
p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r Associativity of OR
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) AND distributes over OR
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) OR distributes over AND

p→ q ≡ ¬p ∨ q Equivalence of implication and OR
p→ q ≡ ¬q → ¬p Contraposition
p↔ q ≡ (p→ q) ∧ (q → p) Expansion of if and only if
p↔ q ≡ ¬p↔ ¬q Inverse of if and only f
p↔ q ≡ q ↔ p Commutativity of if and only if

Table 2.2: Common logical equivalences (see also [Fer08, Theorem 1.1])

CHAPTER 2. MATHEMATICAL LOGIC 21

The converse of p→ q is q → p. E.g. the converse of “If I am human
then I am a mammal” is “If I am a mammal then I am human.” The converse
of a statement is always logically equivalent to the inverse. Often in proving a
biconditional (e.g., “I am human and only if I am a mammal”), one proceeds
by proving first the implication in one direction and then either the inverse
or the converse, as either is logically equivalent to the implication in the
other direction.

2.2.3.2 Equivalences involving true and false

Any tautology is equivalent to true; any contradiction is equivalent to false.
Two important cases of this are the law of the excluded middle

P ∨ ¬P ≡ 1

and its dual, the law of non-contradiction

P ∧ ¬P ≡ 0.

The law of the excluded middle is what allows us to do case analysis, where
we prove that some proposition Q holds by showing first that P implies Q
and then that ¬P also implies Q.3

3Though we will use the law of the excluded middle, it has always been a little bit
controversial, because it is non-constructive: it tells you that one of P or ¬P is true,
but it doesn’t tell you which.
For this reason, some logicians adopt a variant of classical logic called intuitionistic

logic where the law of the excluded middle does not hold. Though this was originally
done for aesthetic reasons, it turns out that there is a deep connection between computer
programs and proofs in intuitionistic logic, known as the Curry-Howard isomorphism.
The idea is that you get intuitionistic logic if you interpret
• P as an object of type P ;
• P → Q as a function that takes a P as an argument and returns a Q;
• P ∧Q as an object that contains both a P and a Q (like a struct in C);
• P ∨Q as an object that contains either a P or a Q (like a union in C); and
• ¬P as P → ⊥, a function that given a P produces a special error value ⊥ that can’t

otherwise be generated.
With this interpretation, many theorems of classical logic continue to hold. For example,

modus ponens says
(P ∧ (P → Q))→ Q.

Seen through the Curry-Howard isomorphism, this means that there is a function that,
given a P and a function that generates a Q from a P , generates a Q. For example, the
following Scheme function:

CHAPTER 2. MATHEMATICAL LOGIC 22

P ∧ 0 ≡ 0 P ∨ 0 ≡ P
P ∧ 1 ≡ P P ∨ 1 ≡ 1

P ↔ 0 ≡ ¬P P ⊕ 0 ≡ P
P ↔ 1 ≡ P P ⊕ 1 ≡ ¬P
P → 0 ≡ ¬P 0→ P ≡ 1
P → 1 ≡ 1 1→ P ≡ P

Table 2.3: Absorption laws. The first four are the most important. Note
that ∧, ∨, ⊕, and ↔ are all commutative, so reversed variants also work.

One strategy for simplifying logical expressions is to try to apply known
equivalences to generate sub-expressions that reduce to true or false via the
law of the excluded middle or the law of non-contradiction. These can then
be absorbed into nearby terms using various absorption laws, shown in
Table 2.3.

Example Let’s show that (P ∧ (P → Q)) → Q is a tautology. (This
justifies the inference rule modus ponens, defined below.) Working from the

(define (modus-ponens p p-implies q) (p-implies-q p))

Similarly, in a sufficiently sophisticated programming language we can show P → ¬¬P ,
since this expands to P → ((P → ⊥)→ ⊥), and we can write a function that takes a P as
its argument and returns a function that takes a P → ⊥ function and feeds the P to it:

(define (double-negation p) (lambda (p-implies-fail)
(p-implies-fail p)))

But we can’t generally show ¬¬P → P , since there is no way to take a function of type
(P → ⊥)→ ⊥ and extract an actual example of a P from it. Nor can we expect to show
P ∨ ¬P , since this would require exhibiting either a P or a function that takes a P and
produces an error, and for any particular type P we may not be able to do either.

For normal mathematical proofs, we won’t bother with this, and will just assume P ∨¬P
always holds.

CHAPTER 2. MATHEMATICAL LOGIC 23

inside out, we can compute

(P ∧ (P → Q))→ Q ≡ (P ∧ (¬P ∨Q))→ Q expand →
≡ ((P ∧ ¬P) ∨ (P ∧Q))→ Q distribute ∨ over ∧
≡ (0 ∨ (P ∧Q))→ Q non-contradiction
≡ (P ∧Q)→ Q absorption
≡ ¬(P ∧Q) ∨Q expand →
≡ (¬P ∨ ¬Q) ∨Q De Morgan’s law
≡ ¬P ∨ (¬Q ∨Q) associativity
≡ ¬P ∨ 1 excluded middle
≡ 1 absorption

In this derivation, we’ve labeled each step with the equivalence we used.
Most of the time we would not be this verbose.

2.2.4 Normal forms

A compound proposition is in conjunctive normal form (CNF for short)
if it is obtained by ANDing together ORs of one or more variables or their
negations (an OR of one variable is just the variable itself). So for example
P , (P ∨ Q) ∧ R, (P ∨ Q) ∧ (Q ∨ R) ∧ (¬P), and (P ∨ Q) ∧ (P ∨ ¬R) ∧
(¬P ∨ Q ∨ S ∨ T ∨ ¬U) are in CNF, but (P ∨ Q) ∧ (P ∨ ¬R) ∧ (¬P ∧ Q),
(P ∨Q)∧ (P → R)∧ (¬P ∨Q), and (P ∨ (Q∧R))∧ (P ∨¬R)∧ (¬P ∨Q) are
not. Using the equivalence P → Q ≡ ¬P ∨Q, De Morgan’s laws, and the
distributive law, it is possible to rewrite any compound proposition in CNF.

This doesn’t necessarily produce the simplest CNF. A famous Zen koan
involves a student going for instruction to a swordmaster who also happens
to be a Zen monk. The master tells the student “If you draw your sword,
I will cut off your head. If you do not draw your sword, I will cut off your
head.” How should the student interpret this alarming statement?

Writing P for the proposition that the student draws his sword and Q
for the proposition that the master cuts off his head, we can immediately
convert this to CNF by expanding the implications:

(P → Q) ∧ (¬P → Q) ≡ (¬P ∨Q) ∧ (P ∨Q)

If we then attempt to simplify this by applying, say, the distributive law,

CHAPTER 2. MATHEMATICAL LOGIC 24

it makes things worse:

(¬P ∨Q) ∧ (P ∨Q) ≡ (¬P ∧ P) ∨ (¬P ∧Q) ∨ (Q ∧ P) ∨ (Q ∧Q)
≡ 0 ∨ (¬P ∧Q) ∨ (Q ∧ P) ∨Q
≡ (¬P ∧Q) ∨ (Q ∧ P) ∨Q.

Now the proposition is in disjunctive normal form, which means it’s
an OR of ANDs. If we look closely at the clauses, we realize that the Q clause
by itself controls the outcome of the OR, since if either of the other clauses
are true, so is Q.4 So in fact a simpler CNF version of this proposition is
just Q alone, which is a not very big AND over a single not very big OR
clause. Having simplified to Q, we realize that what the master just said was
“I will cut off your head.” It’s time for the student to draw his sword!

CNF formulas are particularly useful because they support resolution
(see §2.4.1). Using the tautology (P ∨ Q) ∧ (¬P ∨ R) → Q ∨ R, we can
construct proofs from CNF formulas by looking for occurrences of some
simple proposition and its negation and resolving them, which generates a
new clause we can add to the list. For example, we can compute

(P ∨Q) ∧ (P ∨ ¬R) ∧ (¬P ∨Q) ∧ (¬Q ∨R)
`(P ∨Q) ∧ (P ∨ ¬R) ∧ (¬P ∨Q) ∧ (¬Q ∨R) ∧Q
`(P ∨Q) ∧ (P ∨ ¬R) ∧ (¬P ∨Q) ∧ (¬Q ∨R) ∧Q ∧R
`(P ∨Q) ∧ (P ∨ ¬R) ∧ (¬P ∨Q) ∧ (¬Q ∨R) ∧Q ∧R ∧ P
`P.

This style of proof is called a resolution proof . Because of its simplicity
it is particularly well-suited for mechanical theorem provers. Such proofs
can also encode traditional proofs based on modus ponens: the inference
P ∧ (P → Q) ` Q can be rewritten as resolution by expanding → to get
P ∧ (¬P ∨Q) ` Q.

Similarly, a compound proposition is in disjunctive normal form
(DNF) if it consists of an OR of ANDs, e.g. (P ∧Q)∨ (P ∧¬R)∨ (¬P ∧Q).
Just as any compound proposition can be transformed into CNF, it can
similarly be transformed into DNF. DNF is sometimes easier to compute from
truth tables, since we can include a AND clause recognizing each assignment
that produces a 1, and OR them together.5 But this may not give us a very
concise DNF.

4This is kind of a handwavy argument. If we want to justify this claim formally, we
could write out a truth table.

5Using De Morgan’s laws, the same works for CNF, where we include for each assignment
that produces a 0 an OR clause that is false for that row.

CHAPTER 2. MATHEMATICAL LOGIC 25

Note that conjunctive and disjunctive normal forms are not unique; for
example, P ∧Q and (P ∨¬Q)∧ (P ∨Q)∧ (¬P ∨Q) are both in conjunctive
normal form and are logically equivalent to each other. So while CNF can be
handy as a way of reducing the hairiness of a formula (by eliminating nested
parentheses or negation of non-variables, for example), it doesn’t necessarily
let us see immediately if two formulas are really the same.

2.3 Predicate logic
Using only propositional logic, we can express a simple version of a famous
argument:

• Socrates is a man.

• If Socrates is a man, then Socrates is mortal.

• Therefore, Socrates is mortal.

This is an application of the inference rule called modus ponens, which
says that from p and p→ q you can deduce q. The first two statements are
axioms (meaning we are given them as true without proof), and the last is
the conclusion of the argument.

What if we encounter Socrates’s infinitely more logical cousin Spocrates?
We’d like to argue

• Spocrates is a man.

• If Spocrates is a man, then Spocrates is mortal.

• Therefore, Spocrates is mortal.

Unfortunately, the second step depends on knowing that humanity implies
mortality for everybody, not just Socrates. If we are unlucky in our choice of
axioms, we may not know this. What we would like is a general way to say
that humanity implies mortality for everybody, but with just propositional
logic, we can’t write this fact down.

2.3.1 Variables and predicates

The solution is to extend our language to allow formulas that involve variables.
So we might let x, y, z, etc. stand for any element of our universe of
discourse or domain—essentially whatever things we happen to be talking
about at the moment. We can now write statements like:

CHAPTER 2. MATHEMATICAL LOGIC 26

• “x is human.”

• “x is the parent of y.”

• “x+ 2 = x2.”

These are not propositions because they have variables in them. Instead,
they are predicates; statements whose truth-value depends on what concrete
object takes the place of the variable. Predicates are often abbreviated by
single capital letters followed by a list of arguments, the variables that
appear in the predicate, e.g.:

• H(x) = “x is human.”

• P (x, y) = “x is the parent of y.”

• Q(x) = “x+ 2 = x2.”

We can also fill in specific values for the variables, e.g. H(Spocrates) =
“Spocrates is human.” If we fill in specific values for all the variables, we have
a proposition again, and can talk about that proposition being true (e.g.
Q(2) and Q(−1) are true) or false (Q(0) is false).

In first-order logic, which is what we will be using in this course,
variables always refer to things and never to predicates: any predicate
symbol is effectively a constant. There are higher-order logics that allow
variables to refer to predicates, but most mathematics accomplishes the same
thing by representing predicates with sets (see Chapter 3).

2.3.2 Quantifiers

What we really want is to be able to say when H or P or Q is true for many
different values of their arguments. This means we have to be able to talk
about the truth or falsehood of statements that include variables. To do this,
we bind the variables using quantifiers, which state whether the claim we
are making applies to all values of the variable (universal quantification),
or whether it may only apply to some (existential quantification).

2.3.2.1 Universal quantifier

The universal quantifier ∀ (pronounced “for all”) says that a statement
must be true for all values of a variable within some universe of allowed
values (which is often implicit). For example, “all humans are mortal” could

CHAPTER 2. MATHEMATICAL LOGIC 27

be written ∀x : Human(x) → Mortal(x) and “if x is positive then x + 1 is
positive” could be written ∀x : x > 0→ x+ 1 > 0.

If you want to make the universe explicit, use set membership notation.6
An example would be ∀x ∈ Z : x > 0 → x + 1 > 0. This is logically
equivalent to writing ∀x : x ∈ Z → (x > 0 → x + 1 > 0) or to writing
∀x : (x ∈ Z ∧ x > 0) → x + 1 > 0, but the short form makes it more clear
that the intent of x ∈ Z is to restrict the range of x.7

The statement ∀x : P (x) is equivalent to a very large AND; for example,
∀x ∈ N : P (x) could be rewritten (if you had an infinite amount of paper)
as P (0) ∧ P (1) ∧ P (2) ∧ P (3) ∧ Normal first-order logic doesn’t allow
infinite expressions like this, but it may help in visualizing what ∀x : P (x)
actually means. Another way of thinking about it is to imagine that x is
supplied by some adversary and you are responsible for showing that P (x) is
true; in this sense, the universal quantifier chooses the worst case value of x.

2.3.2.2 Existential quantifier

The existential quantifier ∃ (pronounced “there exists”) says that a state-
ment must be true for at least one value of the variable. So “some human is
mortal” becomes ∃x : Human(x) ∧Mortal(x). Note that we use AND rather
than implication here; the statement ∃x : Human(x)→ Mortal(x) makes the
much weaker claim that “there is some thing x, such that if x is human, then
x is mortal,” which is true in any universe that contains an immortal purple
penguin—since it isn’t human, Human(penguin)→ Mortal(penguin) is true.

As with ∀, ∃ can be limited to an explicit universe with set membership
notation, e.g., ∃x ∈ Z : x = x2. This is equivalent to writing ∃x : x ∈ Z∧x =
x2.

The formula ∃x : P (x) is equivalent to a very large OR, so that ∃x ∈ N :
P (x) could be rewritten as P (0)∨P (1)∨P (2)∨P (3)∨ Again, you can’t
generally write an expression like this if there are infinitely many terms, but
it gets the idea across.

2.3.2.3 Negation and quantifiers

The following equivalences hold:

¬∀x : P (x) ≡ ∃x : ¬P (x).
¬∃x : P (x) ≡ ∀x : ¬P (x).

6See Chapter 3.
7Programmers will recognize this as a form of syntactic sugar.

CHAPTER 2. MATHEMATICAL LOGIC 28

These are essentially the quantifier version of De Morgan’s laws: the first
says that if you want to show that not all humans are mortal, it’s equivalent
to finding some human that is not mortal. The second says that to show
that no human is mortal, you have to show that all humans are not mortal.

2.3.2.4 Restricting the scope of a quantifier

Sometimes we want to limit the universe over which we quantify to some
restricted set, e.g., all positive integers or all baseball teams. We’ve previously
seen how to do this using set-membership notation, but can also do this for
more general predicates either explicitly using implication:

∀x : x > 0→ x− 1 ≥ 0

or in abbreviated form by including the restriction in the quantifier
expression itself:

∀x > 0 : x− 1 ≥ 0.

Similarly
∃x : x > 0 ∧ x2 = 81

can be written as
∃x > 0 : x2 = 81.

Note that constraints on ∃ get expressed using AND rather than implica-
tion.

The use of set membership notation to restrict a quantifier is a special
case of this. Suppose we want to say that 79 is not a perfect square, by which
we mean that there is no integer whose square is 79. If we are otherwise
talking about real numbers (two of which happen to be square roots of 79),
we can exclude the numbers we don’t want by writing

¬∃x ∈ Z : x2 = 79

which is interpreted as

¬∃x : (x ∈ Z ∧ x2 = 79)

or, equivalently
∀x : x ∈ Z→ x2 6= 79.

Here Z = {. . . ,−2,−1, 0, 1, 2, . . .} is the standard set of integers.
For more uses of ∈, see Chapter 3.

CHAPTER 2. MATHEMATICAL LOGIC 29

2.3.2.5 Nested quantifiers

It is possible to nest quantifiers, meaning that the statement bound by a
quantifier itself contains quantifiers. For example, the statement “there is no
largest prime number” could be written as

¬∃x : (Prime(x) ∧ ∀y : y > x→ ¬Prime(y))

i.e., “there does not exist an x that is prime and any y greater than x is
not prime.” Or in a shorter (though not strictly equivalent) form:

∀x∃y : y > x ∧ Prime(y)

which we can read as “for any x there is a bigger y that is prime.”
To read a statement like this, treat it as a game between the ∀ player

and the ∃ player. Because the ∀ comes first in this statement, the for-all
player gets to pick any x it likes. The exists player then picks a y to make
the rest of the statement true. The statement as a whole is true if the ∃
player always wins the game. So if you are trying to make a statement true,
you should think of the universal quantifier as the enemy (the adversary
in algorithm analysis) who says “nya-nya: try to make this work, bucko!”,
while the existential quantifier is the friend who supplies the one working
response.

As in many two-player games, it makes a difference who goes first. If we
write likes(x, y) for the predicate that x likes y, the statements

∀x∃y : likes(x, y)

and

∃y∀x : likes(x, y)

mean very different things. The first says that for every person, there
is somebody that that person likes: we live in a world with no complete
misanthropes. The second says that there is some single person who is so
immensely popular that everybody in the world likes them. The nesting
of the quantifiers is what makes the difference: in ∀x∃y : likes(x, y), we are
saying that no matter who we pick for x, ∃y : likes(x, y) is a true statement;
while in ∃y∀x : likes(x, y), we are saying that there is some y that makes
∀x : likes(x, y) true.

Naturally, such games can go on for more than two steps, or allow the
same player more than one move in a row. For example

∀x∀y∃z : x2 + y2 = z2

CHAPTER 2. MATHEMATICAL LOGIC 30

is a kind of two-person challenge version of the Pythagorean theorem
where the universal player gets to pick x and y and the existential player has
to respond with a winning z. (Whether the statement itself is true or false
depends on the range of the quantifiers; it’s false, for example, if x, y, and z
are all natural numbers or rationals but true if they are all real or complex.
Note that the universal player only needs to find one bad (x, y) pair to make
it false.)

One thing to note about nested quantifiers is that we can switch the
order of two universal quantifiers or two existential quantifiers, but we can’t
swap a universal quantifier for an existential quantifier or vice versa. So
for example ∀x∀y : (x = y → x + 1 = y + 1) is logically equivalent to
∀y∀x : (x = y → y + 1 = x+ 1), but ∀x∃y : y < x is not logically equivalent
to ∃y∀x : y < x. This is obvious if you think about it in terms of playing
games: if I get to choose two things in a row, it doesn’t really matter which
order I choose them in, but if I choose something and then you respond it
might make a big difference if we make you go first instead.

One measure of the complexity of a mathematical statement is how many
layers of quantifiers it has, where a layer is a sequence of all-universal or
all-existential quantifiers. Here’s a standard mathematical definition that
involves three layers of quantifiers, which is about the limit for most humans:[

lim
x→∞

f(x) = y
]
≡
[
∀ε > 0 : ∃N : ∀x > N : |f(x)− y| < ε

]
.

Now that we know how to read nested quantifiers, it’s easy to see what
the right-hand side means:

1. The adversary picks ε, which must be greater than 0.

2. We pick N .

3. The adversary picks x, which must be greater than N .

4. We win if f(x) is within ε of y.

So, for example, a proof of

lim
x→∞

1/x = 0

would follow exactly this game plan:

1. Choose some ε > 0.

2. Let N > 1/ε. (Note that we can make our choice depend on previous
choices.)

CHAPTER 2. MATHEMATICAL LOGIC 31

3. Choose any x > N .

4. Then x > N > 1/ε > 0, so 1/x < 1/N < ε→ |1/x− 0| < ε. QED!

2.3.2.6 Examples

Here we give some more examples of translating English into statements in
predicate logic.

All crows are black. ∀x : Crow(x)→ Black(x)

The formula is logically equivalent to either of

¬∃xCrow(x) ∧ ¬Black(x)

or

∀x : ¬Black(x)→ ¬Crow(x).

The latter is the core of a classic “paradox of induction” in philosophy:
if seeing a black crow makes me think it’s more likely that all crows are
black, shouldn’t seeing a logically equivalent non-black non-crow (e.g., a
banana yellow AMC Gremlin) also make me think all non-black objects are
non-crows, i.e., that all crows are black? The paradox suggests that logical
equivalence works best for true/false and not so well for probabilities.

Some cows are brown. ∃x : Cow(x) ∧ Brown(x)

No cows are blue. ¬∃x : Cow(x) ∧ Blue(x)

Some other equivalent versions:

∀x : ¬(Cow(x) ∧ Blue(x)
∀x : (¬Cow(x) ∨ ¬Blue(x))
∀x : Cow(x)→ ¬Blue(x)
∀x : Blue(x)→ ¬Cow(x).

All that glitters is not gold. ¬∀x : Glitters(x)→ Gold(x)

Or ∃x : Glitters(x) ∧ ¬Gold(x). Note that the English syntax is a bit
ambiguous: a literal translation might look like ∀x : Glitters(x)→ ¬Gold(x),

CHAPTER 2. MATHEMATICAL LOGIC 32

which is not logically equivalent. This is an example of how predicate logic
is often more precise than natural language.

No shirt, no service. ∀x : ¬Shirt(x)→ ¬Served(x)

Every event has a cause. ∀x∃y : Causes(y, x)

And a more complicated statement: Every even number greater than 2
can be expressed as the sum of two primes.

∀x : (Even(x) ∧ x > 2)→ (∃p∃q : Prime(p) ∧ Prime(q) ∧ (x = p+ q))

The last one is Goldbach’s conjecture. The truth value of this state-
ment is currently unknown.

2.3.3 Functions

A function symbol looks like a predicate but instead of computing a
truth value it returns an object. Function symbols may take zero or more
arguments. The special case of a function symbol with zero arguments is
called a constant.

For example, in the expression 2 + 2 = 5, we’ve got three constants 2, 2,
and 5, a two-argument function +, and a predicate =, which has a special
role in predicate logic that we’ll discuss in more detail below.

The nice thing about function symbols is that they let us populate our
universe without having to include a lot of axioms about various things
existing. The convention is that anything we can name exists. An example
is the construction of the natural numbers 0, 1, 2, . . . used with the Peano
axioms: these are represented using the constant 0 and the successor
function S, so that we can count 0, S0, SS0, SSS0, and so on.

Note however that there is no guarantee that two objects constructed in
different ways are actually distinct (2 + 2 = 4 after all). To express whether
objects are the same as each other or not requires a dedicated equality
predicate, discussed below.

2.3.4 Equality

The equality predicate =, written x = y, is typically included as a standard
part of predicate logic. The interpretation of x = y is that x and y are
the same element of the domain. Equality satisfies the reflexivity axiom

CHAPTER 2. MATHEMATICAL LOGIC 33

∀x : x = x and the substitution axiom schema:

∀x∀y : (x = y → (Px↔ Py))

where P is any predicate. This immediately gives a substitution rule
that says x = y, P (x) ` P (y). It’s likely that almost every proof you ever
wrote down in high school algebra consisted only of many applications of the
substitution rule.

Example: We’ll prove ∀x∀y : (x = y → y = x) from the above axioms
(this property is known as symmetry). Apply substitution to the predicate
Pz ≡ z = x to get ∀x∀y : (x = y → (x = x ↔ y = x)). Use reflexivity
to rewrite this as ∀x∀y : (x = y → (1 ↔ y = x)), which simplifies to
∀x∀y : (x = y → y = x).

Exercise: Prove ∀x∀y∀z : (x = y ∧ y = z → x = z). (This property is
known as transitivity.)

2.3.4.1 Uniqueness

The abbreviation ∃!xP (x) says “there exists a unique x such that P (x).”
This is short for

∃x(P (x) ∧ (∀y : P (y)→ x = y)),
which we can read as “there is an x for which P (x) is true, and any y for

which P (y) is true is equal to x.”
An example is ∃!x : x+ 1 = 12. To prove this we’d have to show not only

that there is some x for which x+ 1 = 12 (11 comes to mind), but that if
we have any two values x and y such that x+ 1 = 12 and y + 1 = 12, then
x = y (this is not hard to do, assuming we have at our disposal the usual
axioms of arithmetic). So the exclamation point encodes quite a bit of extra
work, which is why we often hope that ∃x : x+ 1 = 12 is good enough and
pull out ∃! only if we have to.

There are several equivalent ways to expand ∃!xP (x). Applying contra-
position to P (y)→ x = y gives

∃!xP (x) ≡ ∃x(P (x) ∧ (∀y : x 6= y → ¬P (y))),

which says that any y that is not x doesn’t satisfy P . We can also play some
games with De Morgan’s laws to turn this into

∃!xP (x) ≡ ∃x(P (x) ∧ (¬∃y : x 6= y ∧ P (y))).

This says that there is an x with P (x), but there is no y 6= x with P (y).
All of these are just different ways of saying that x is the only object that
satisfies P .

CHAPTER 2. MATHEMATICAL LOGIC 34

2.3.5 Models

In propositional logic, we can build truth tables that describe all possible
settings of the truth-values of the literals. In predicate logic, the analogous
concept to an assignment of truth-values is a structure. A structure consists
of a set of objects or elements (built using set theory, as described in
Chapter 3), together with a description of which elements fill in for the
constant symbols, which predicates hold for which elements, and what
the value of each function symbol is when applied to each possible list of
arguments (note that this depends on knowing what constant, predicate,
and function symbols are available—this information is called the signature
of the structure). A structure is a model of a particular theory (set of
statements), if each statement in the theory is true in the model.

In general we can’t hope to find all possible models of a given theory.
But models are useful for two purposes: if we can find some model of a
particular theory, then the existence of this model demonstrates that the
theory is consistent; and if we can find a model of the theory in which some
additional statement S doesn’t hold, then we can demonstrate that there is
no way to prove S from the theory (i.e. it is not the case that T ` S, where
T is the list of axioms that define the theory).

2.3.5.1 Examples

• Consider the axiom ¬∃x. This axiom has exactly one model (it’s
empty).

• Now consider the axiom ∃!x, which we can expand out to ∃x∀yy = x.
This axiom also has exactly one model (with one element).

• We can enforce exactly k elements with one rather long axiom, e.g. for
k = 3 do ∃x1∃x2∃x3∀y : y = x1 ∨ y = x2 ∨ y = x3 ∧ x1 6= x2 ∧ x2 6=
x3 ∧ x3 6= x1. In the absence of any special symbols, a structure of 3
undifferentiated elements is the unique model of this axiom.

• Suppose we add a predicate P and consider the axiom ∃xPx. Now
we have many models: take any nonempty model you like, and let
P be true of at least one of its elements. If we take a model with
two elements a and b, with Pa and ¬Pb, we see that ∃xPx is not
enough to prove ∀xPx, since ∃xPx is true in the model but ∀xPx isn’t.
Conversely, an empty model satisfies ∀xPx ≡ ¬∃x¬Px but not ∃xPx.

CHAPTER 2. MATHEMATICAL LOGIC 35

• Now let’s bring in a function symbol S and constant symbol 0. Consider
a stripped-down version of the Peano axioms that consists of just the
axiom ∀x∀y : Sx = Sy → x = y. Both the natural numbers N and
the integers Z are a model for this axiom, as is the set Zm of integers
mod m for any m (see §8.3). In each case each element has a unique
predecessor, which is what the axiom demands. If we throw in the first
Peano axiom ∀x : Sx 6= 0, we eliminate Z and Zm because in each of
these models 0 is a successor of some element. But we don’t eliminate
a model that consists of two copies of N sitting next to each other (only
one of which contains the “official” 0), or even a model that consists of
one copy of N (that includes the official 0 with no predecessor) plus
any number of copies of N, Z, and Zm.

• A practical example: The family tree of the kings of France is a
model of the theory containing the two axioms ∀x∀y∀zParent(x, y) ∧
Parent(y, z)→ GrandParent(x, z) and ∀x∀yParent(x, y)→ ¬Parent(y, x).
But this set of axioms could use some work, since it still allows for
the possibility that there are some x and y for which Parent(x, y) and
GrandParent(y, x) are both true.

2.4 Proofs
A proof is a way to derive statements from other statements. It starts with
axioms (statements that are assumed in the current context always to be
true), theorems or lemmas (statements that were proved already; the
difference between a theorem and a lemma is whether it is intended as a final
result or an intermediate tool), and premises P (assumptions we are making
for the purpose of seeing what consequences they have), and uses inference
rules to derive Q. The axioms, theorems, and premises are in a sense the
starting position of a game whose rules are given by the inference rules. The
goal of the game is to apply the inference rules until Q pops out. We refer to
anything that isn’t proved in the proof itself (i.e., an axiom, theorem, lemma,
or premise) as a hypothesis; the result Q is the conclusion.

When a proof exists of Q from some premises P1, P2, . . . , we say that Q
is deducible or provable from P1, P2, . . . , which is written as

P1, P2, . . . ` Q.

If we can prove Q directly from our inference rules without making any
assumptions, we may write

` Q

CHAPTER 2. MATHEMATICAL LOGIC 36

The turnstile symbol ` has the specific meaning that we can derive
the conclusion Q by applying inference rules to the premises. This is not
quite the same thing as saying P → Q. If our inference rules are particularly
weak, it may be that P → Q is true but we can’t prove Q starting with
P . Conversely, if our inference rules are too strong (maybe they can prove
anything, even things that aren’t true) we might have P ` Q but P → Q is
false.

For propositions, most of the time we will use inference rules that are just
right, meaning that P ` Q implies that P → Q is a tautology, (soundness)
and P → Q being a tautology implies that P ` Q (completeness). Here
the distinction between ` and → is whether we want to talk about the
existence of a proof (the first case) or about the logical relation between two
statements (the second).

Things get a little more complicated with statements involving predicates.
For predicate logic, there are incompleteness theorems that say that if
our system of axioms is powerful enough (basically capable of representing
arithmetic), then there are are statements P such that neither of P or ¬P
are provable unless the theory is inconsistent.

2.4.1 Inference Rules

Inference rules let us construct valid arguments, which have the useful
property that if their premises are true, their conclusions are also true.

The main source of inference rules is tautologies of the form P1∧P2 . . .→
Q; given such a tautology, there is a corresponding inference rule that allows
us to assert Q once we have P1, P2, Given an inference rule of this form
and a goal Q, we can then look for ways to show P1, P2, . . . all hold, either
because each Pi is an axiom/theorem/premise or because we can prove it
from other axioms, theorems, or premises.

The most important inference rule is modus ponens, based on the
tautology (p ∧ (p → q)) → q; this lets us, for example, write the following
famous argument:8

1. If it doesn’t fit, you must acquit. [Axiom]

2. It doesn’t fit. [Premise]

3. You must acquit. [Modus ponens applied to 1+2]
8Maybe not as famous as it once was.

CHAPTER 2. MATHEMATICAL LOGIC 37

There are many named inference rules in classical propositional logic.
We’ll list some of them below. You don’t need to remember the names
of anything except modus ponens, and most of the rules are pretty much
straightforward applications of modus ponens plus some convenient tautology
that can be proved by truth tables or stock logical equivalences. (For example,
the “addition” rule below is just the result of applying modus ponens to p
and the tautology p→ (p ∨ q).)

Inference rules are often written by putting the premises above a hor-
izontal line and the conclusion below. In text, the horizontal line is often
replaced by the symbol `, which means exactly the same thing. Premises
are listed on the left-hand side separated by commas, and the conclusion is
placed on the right. We can then write

p ` p ∨ q. Addition
p ∧ q ` p. Simplification
p, q ` p ∧ q. Conjunction

p, p→ q ` q. Modus ponens
¬q, p→ q ` ¬p. Modus tollens

p→ q, q → r ` p→ r. Hypothetical syllogism
p ∨ q,¬p ` q. Disjunctive syllogism

p ∨ q,¬p ∨ r ` q ∨ r. Resolution

Of these rules, addition, simplification, and conjunction are mostly used
to pack and unpack pieces of arguments. Modus ponens “the method of
affirming” (and its reversed cousin modus tollens “the method of denying”)
let us apply implications. You don’t need to remember modus tollens if you
can remember the contraposition rule (p→ q) ≡ (¬q → ¬p). Hypothetical
syllogism just says that implication is transitive; it lets you paste together
implications if the conclusion of one matches the premise of the other.
Disjunctive syllogism is again a disguised version of modus ponens (via the
logical equivalence (p∨ q) ≡ (¬p→ q)); you don’t need to remember it if you
can remember this equivalence. Resolution is almost never used by humans
but is very popular with computer theorem provers.

An argument is valid if the conclusion is true whenever the hypotheses
are true. Any proof constructed using the inference rules is valid. It does not
necessarily follow that the conclusion is true; it could be that one or more of
the hypotheses is false:

1. If you give a mouse a cookie, he’s going to ask for a glass of milk.
[Axiom]

CHAPTER 2. MATHEMATICAL LOGIC 38

2. If he asks for a glass of milk, he will want a straw. [Axiom]

3. You gave a mouse a cookie. [Premise]

4. He asks for a glass of milk. [Modus ponens applied to 1 and 3.]

5. He will want a straw. [Modus ponens applied to 2 and 4.]

Will the mouse want a straw? No: Mice can’t ask for glasses of milk, so
Axiom 1 is false.

2.4.2 Proofs, implication, and natural deduction

Recall that P ` Q means there is a proof of Q by applying inference rules
to P , while P → Q says that Q holds whenever P does. These are not the
same thing: provability (`) is outside the theory (it’s a statement about
whether a proof exists or not) while implication (→) is inside (it’s a logical
connective for making compound propositions). But most of the time they
mean almost the same thing.

For example, suppose that P → Q is provable without any assumptions:

` P → Q.

Since we can always ignore extra premises, we get

P ` P → Q

and thus

P ` P, P → Q,

which gives

P ` Q

by applying modus ponens to the right-hand side.
So we can go from ` P → Q to P ` Q.
This means that provability is in a sense weaker than implication: it

holds (assuming modus ponens) whenever implication does. But we usually
don’t use this fact much, since P → Q is a much more useful statement than
P ` Q. Can we go the other way?

CHAPTER 2. MATHEMATICAL LOGIC 39

2.4.2.1 The Deduction Theorem

Yes, using the Deduction Theorem.
Often we want to package the result of a proof as a theorem (a proven

statement that is an end in itself) or lemma (a proven statement that is
intended mostly to be used in other proofs). Typically a proof shows that,
given some base assumptions Γ, if certain premises P1, P2, . . . Pn hold, then
some conclusion Q holds (with various axioms or previously-established
theorems assumed to be true from context). To use this result later, it is
useful to be able to package it as an implication P1 ∧ P2 ∧ . . . Pn → Q. In
other words, we want to go from

Γ, P1, P2, . . . , Pn ` Q

to
Γ ` (P1 ∧ P2 ∧ . . . ∧ Pn)→ Q.

The statement that we can do this, for a given collection of inference
rules, is the Deduction Theorem:

Theorem 2.4.1 (Deduction Theorem). If there is a proof of Q from premises
Γ, P1, P2, . . . , Pn, then there is a proof of P1 ∧ P2 ∧ . . . ∧ Pn → Q from Γ
alone.

The actual proof of the theorem depends on the particular set of inference
rules we start with, but the basic idea is that there exists a mechanical
procedure for extracting a proof of the implication from the proof of Q
assuming P1 etc.

Caveat: In predicate logic, the deduction theorem only applies if none
of the premises contain any free variables (which are variables that aren’t
bound by a universal or existential quantifier). Usually you won’t run into
this, but there are some bad cases that arise without this restriction.

2.4.2.2 Natural deduction

In practice, we usually don’t refer to the Deduction Theorem directly, and
instead adopt a new inference rule:

Γ, P ` Q
Γ ` P → Q

(→ I)

This says that if we can prove Q using assumptions Γ and P , then we
can prove P → Q using just Γ. Note that the horizontal line acts like a

CHAPTER 2. MATHEMATICAL LOGIC 40

higher-order version of `; it lets us combine one or more proofs into a new,
bigger proof.

This style of inference rule, where we explicitly track what assumptions
go into a particular result, is known as natural deduction. The natural
deduction approach was invented by Gentzen [Gen35a, Gen35b] as a way to
make inference rules more closely match actual mathematical proof-writing
practice than the modus-ponens-only approach that modern logicians had
been using up to that point.9

The particular rule (→ I) is called introducing implication. There is a
corresponding rule for eliminating implication that is essentially just modus
ponens:

Γ ` P → Q Γ ` P
Γ ` Q (→ E)

If we want to be really systematic about things, we can rewrite most of our
standard inference rules as introduction and elimination rules for particular
operators. This can make them a bit easier to remember, since for each
Boolean operator there is often an “obvious” introduction and elimination
rule for it. See Table 2.4 for a list.

2.4.3 Inference rules for equality

The equality predicate is special, in that it allows for the substitution rule

x = y, P (x) ` P (y).

If we don’t want to include the substitution rule as an inference rule, we
could instead represent it as an axiom schema:

∀x : ∀y : ((x = y ∧ P (x))→ P (y)).

But this is messier.
We can also assert x = x directly:

` x = x

9See http://plato.stanford.edu/entries/proof-theory-development/ for a more
detailed history of the development of proof theory in general and [Pel99] for a discussion
of how different versions of proof theory have been adopted in textbooks.

http://plato.stanford.edu/entries/proof-theory-development/

CHAPTER 2. MATHEMATICAL LOGIC 41

Γ ` P
Γ ` ¬¬P (¬I)

Γ ` ¬¬P
Γ ` P (¬E)

Γ ` P Γ ` Q
Γ ` P ∧Q (∧I)

Γ ` P ∧Q
Γ ` P (∧E1)

Γ ` P ∧Q
Γ ` Q (∧E2)

Γ ` P
Γ ` P ∨Q (∨I1)

Γ ` Q
Γ ` P ∨Q (∨I2)

Γ ` P ∨Q Γ ` ¬Q
Γ ` P (∨E1)

Γ ` P ∨Q Γ ` ¬P
Γ ` Q (∨E2)

Γ, P ` Q
Γ ` P → Q

(→ I)

Γ ` P → Q Γ ` P
Γ ` Q (→ E1)

Γ ` P → Q Γ ` ¬Q
Γ ` ¬P (→ E2)

Table 2.4: Natural deduction: introduction and elimination rules

CHAPTER 2. MATHEMATICAL LOGIC 42

2.4.4 Inference rules for quantified statements

Universal generalization If y is a variable that does not appear in Γ, then

Γ ` P (y)
Γ ` ∀x : P (x)

This says that if we can prove that some property holds for a “generic”
y, without using any particular properties of y, then in fact the property
holds for all possible x.
In a written proof, this will usually be signaled by starting with some-
thing like “Let y be an arbitrary [member of some universe]”. For
example: Suppose we want to show that there is no biggest natural
number, i.e. that ∀n ∈ N : ∃n′ ∈ N : n′ > n. Proof: Let n be any
element of N. Let n = n + 1. Then n′ > n. (Note: there is also an
instance of existential generalization here.)

Universal instantiation In the other direction, we have

∀x : Q(x) ` Q(c).

Here we go from a general statement about all possible values x to a
statement about a particular value. Typical use: Given that all humans
are mortal, it follows that Spocrates is mortal.

Existential generalization This is essentially the reverse of universal in-
stantiation: it says that, if c is some particular object, we get

Q(c) ` ∃x : Q(x).

The idea is that to show that Q(x) holds for at least one x, we can
point to c as a specific example of an object for which Q holds. The
corresponding style of proof is called a proof by construction or
proof by example.
For example: We are asked to prove that there exists an even prime
number. Look at 2: it’s an even prime number. QED.
Not all proofs of existential statements are constructive, in the sense
of identifying a single object that makes the existential statement
true. An example is a well-known non-constructive proof that there
are irrational numbers a and b for which ab is rational. The non-
constructive proof is to consider

√
2
√

2. If this number is rational,

CHAPTER 2. MATHEMATICAL LOGIC 43

Γ ` Pc
Γ ` ∀x : Px (∀I)

Γ ` ∀x : Px
Γ ` Pc (∀E)

Γ ` Pc
Γ ` ∃x : Px (∃I)

Γ ` ∃x : Px
Γ ` Pc (∃E)

Table 2.5: Natural deduction: introduction and elimination rules for quan-
tifiers. For ∀I and ∃E, c is a new symbol that does not appear in P or
Γ.

it’s an example of the claim; if not,
(√

2
√

2
)√2

=
√

22 = 2 works.10

Non-constructive proofs are generally not as useful as constructive
proofs, because the example used in a constructive proof may have
additional useful properties in other contexts.

Existential instantiation ∃x : Q(x) ` Q(c) for some c, where c is a
new name that hasn’t previously been used (this is similar to the
requirement for universal generalization, except now the new name is
on the right-hand side).
The idea here is that we are going to give a name to some c that satisfies
Q(c), and we know that we can get away this because ∃x : Q(x) says
that some such thing exists.11

In a proof, this is usually signaled by “let x be. . . ” or “call it x.” For
example: Suppose we know that there exists a prime number greater
than 7. Let p be some such prime number greater than 7.

In natural-deduction terms, we can think of these rules as introduction
and elimination rules for ∀ and E. Table 2.5 shows what these look like.

10For this particular claim, there is also a constructive proof:
√

2log2 9 = 3 [Sch01].
11This is actually a fairly painful idea to formalize. One version in pure first-order logic

is the axiom
((∀x : (Q(x)→ P)) ∧ ∃y : Q(y))→ P.

Nobody but a logician would worry about this.

CHAPTER 2. MATHEMATICAL LOGIC 44

2.5 Proof techniques
A proof technique is a template for how to go about proving particular
classes of statements: this template guides you in the choice of inference
rules (or other proof techniques) to write the actual proof. This doesn’t
substitute entirely for creativity (there is no efficient mechanical procedure
for generating even short proofs unless P = NP), but it can give you some
hints for how to get started.

Table 2.6 gives techniques for trying to prove A → B for particular
statements A and B. The techniques are mostly classified by the structure
of B. Before applying each technique, it may help to expand any definitions
that appear in A or B.

These strategies are largely drawn from [Sol05], particularly the summary
table in the appendix, which is the source of the order and organization of
the table and the names of most of the techniques. The table omits some
techniques that are mentioned in Solow [Sol05]: Direct Uniqueness, Indirect
Uniqueness, and various max/min arguments. The remaining techniques
mostly follow directly from the inference rules from the preceding section;
an exception is induction, which will be discussed in Chapter 5.

For other sources, Ferland [Fer08] has an entire chapter on proof tech-
niques of various sorts. Rosen [Ros12] describes proof strategies in §§1.5–1.7
and Biggs [Big02] describes various proof techniques in Chapters 1, 3, and 4;
both descriptions are a bit less systematic than the ones in Solow or Ferland,
but also include a variety of specific techniques that are worth looking at.

If you want to prove A↔ B, the usual approach is to prove A→ B and
A ← B separately. Proving A → B and ¬A → ¬B also works (because of
contraposition).

CHAPTER 2. MATHEMATICAL LOGIC 45

Strategy When Assume Conclude What to do/why it
works

Direct proof Try it first A B Apply inference rules
to work forward from A
and backward from B;
when you meet in the
middle, pretend that
you were working for-
ward from A all along.

Contraposition B = ¬Q ¬B ¬A Apply any other tech-
nique to show ¬B →
¬A and then apply
the contraposition rule.
Sometimes called an in-
direct proof although
the term indirect proof
is often used instead for
proofs by contradiction
(see below).

Contradiction WhenB = ¬Q, or when
you are stuck trying the
other techniques.

A ∧ ¬B False Apply previous meth-
ods to prove both P
and ¬P for some P .
Note: this can be a lit-
tle dangerous, because
you are assuming some-
thing that is (probably)
not true, and it can
be hard to detect as
you prove further false
statements whether the
reason they are false is
that they follow from
your false assumption,
or because you made a
mistake. Direct or con-
traposition proofs are
preferred because they
don’t have this prob-
lem.

CHAPTER 2. MATHEMATICAL LOGIC 46

Construction B = ∃xP (x) A P (c) for
some
specific
object c.

Pick a likely-looking c
and prove that P (c)
holds.

Counterexample B = ¬∀xP (x) A ¬P (c)
for some
specific
object c.

Pick a likely-looking c
and show that ¬P (c)
holds. This is identical
to a proof by construc-
tion, except that we
are proving ∃x¬P (x),
which is equivalent to
¬∀xP (x).

Choose B = ∀x(P (x)→ Q(x)) A, P (c),
where
c is
chosen
arbitrar-
ily.

Q(c) Choose some c and
assume A and P (c).
Prove Q(c). Note: c
is a placeholder here.
If P (c) is “c is even”
you can write “Let c
be even” but you can’t
write “Let c = 12”,
since in the latter case
you are assuming extra
facts about c.

Instantiation A = ∀xP (x) A B Pick some particular
c and prove that
P (c) →B. Here you
can get away with
saying “Let c = 12.”
(If c = 12 makes B
true).

Elimination B = C ∨D A ∧ ¬C D The reason this works
is that A ∧ ¬C → D
is equivalent to ¬(A ∧
¬C)→ D ≡ ¬A ∨ C ∨
D ≡ A→ (C ∨D). Of
course, it works equally
well if you start with
A ∧ ¬D and prove C.

CHAPTER 2. MATHEMATICAL LOGIC 47

Case analysis A = C ∨D C,D B Here you write two sep-
arate proofs: one that
assumes C and proves
B, and one that as-
sumes D and proves B.
A special case is when
D = ¬C. You can also
consider more cases, as
long as A implies at
least one of the cases
holds.

Induction B = ∀x ∈ NP (x) A P (0)
and
∀x ∈ N :
(P (x)→
P (x +
1)).

If P (0) holds, and P (x)
implies P (x + 1) for
all x, then for any spe-
cific natural number n
we can consider con-
structing a sequence of
proofs P (0)→ P (1)→
P (2) → . . . → P (n).
(This is actually a defin-
ing property of the nat-
ural numbers.)

Table 2.6: Proof techniques (adapted from [Sol05]

2.6 Examples of proofs
Real proofs by actual human mathematicians are usually written in a con-
densed style that uses ordinary language, without trying to convert everything
into logical notation. But in principle it should be possible to translate any
such proof into a formal proof. In this section, we give some examples of
what a condensed proof might look like, and explain how the steps used in
such proofs correspond to inference rules we’ve already seen.

2.6.1 Axioms for even numbers

Let’s define what it means for a number to be even, where we use the Peano-
axiom convention for writing numbers as 0, S0, SS0, etc. We will use the

CHAPTER 2. MATHEMATICAL LOGIC 48

following axioms for our definition, where Ex means that x is even:

A1 :∀x : Ex↔ (x = 0 ∨ (∃y : Ey ∧ x = SSy))
A2 :∀x : 0 6= Sx.

A3 :∀x∀y : Sx = Sy → x = y.

Here A1 is the definition of Ex and A2 and A3 are general axioms about
S that we are throwing in because we will need them in some of our proofs.

2.6.2 A theorem and its proof

Now let’s prove this exciting theorem:

Theorem 2.6.1. All of the following statements are true:

1. E0.

2. ¬E(S0).

3. E(SS0).

4. ¬E(SSS0).

5. E(SSSS0).

Proof. 1. Axiom A1 says that x is even if it is 0.

2. Suppose E(S0) holds. Then either S0 = 0 or S0 = SSy for some
y such that Ey holds. The first case contradicts A2; in the second
case, applying A3 gives that S0 = SSy implies 0 = Sy, which again
contradicts A2. So in either case we arrive at a contradiction, and our
original assumption that E(S0) is true does not hold.
(This is an example of an indirect proof.)

3. From A1 we have that E(SS0) holds if there exists some y such that
Ey and SS0 = SSy. Let y = 0.

4. We have previously established ¬E(S0). We also know that SSS0 6= 0,
so E(SSS0) is true if and only if SSS0 = SSy for some y with Ey.
Applying A2 twice gives SSS0 = SSy iff S0 = y. But we already
showed ¬E(S0), so ¬E(SSS0).

5. Since E(SS0) and SSSS0 = SS0, E(SSSS0).

CHAPTER 2. MATHEMATICAL LOGIC 49

The nice thing about proving all of these facts at once is that as we prove
each one we can use that fact to prove the later ones. From a purely stylistic
point of view, we can also assume that the reader is probably starting to
catch on to some of the techniques we are using, which is why the argument
for E(SSSS0) is so succinct compared to the argument for E(SS0).

If we had to expand these arguments out using explicit inference rules,
they would take longer, but we could do it. Let’s try this for the proof of
¬E(S0). We are trying to establish that A1, A2, A3 ` ¬E(S0). Abbreviating
A1, A2, A3 as Γ, the strategy is to show that Γ ` E(S0) → Q for some Q
with Γ ` ¬Q; we can then apply the → E2 rule (aka modus tollens) to get
Γ ` ¬E(S0).

Formally, this looks like:

1. Γ ` E(S0)↔ (S0 = 0 ∨ ∃y : (Ey ∧ S0 = SSy)). (∀E applied to A1.)

2. Γ ` E(S0)→ (S0 = 0 ∨ ∃y : (Ey ∧ S0 = SSy)). (Expand ↔ and use
one of the ∧ elimination rules.)

3. Γ, E(S0) ` S0 = 0 ∨ ∃y : (Ey ∧ S0 = SSy). (→ E).

4. Γ, E(S0) ` ¬(S0 = 0). (Apply ∀E to A2.)

5. Γ, E(S0) ` ∃y : (Ey∧S0 = SSy). (Combine last two steps using ∨E1.)

6. Γ, E(S0) ` Ez ∧ S0 = SSz. (This is ∃E. In the condensed proof we
didn’t rename y, but calling it z here makes it a little more obvious
that we are fixing some particular constant.)

7. Γ, E(S0) ` S0 = SSz. (∧E1.)

8. Γ, E(S0) ` S0 = SSz ↔ 0 = Sz. (Apply ∀E to A3).

9. Γ, E(S0) ` S0 = SSz → 0 = Sz. (Another expansion plus ∧E).

10. Γ, E(S0) ` 0 = Sz. (Apply → E1 to S0 = SSz and S0 = SSz → 0 =
Sz.)

11. Γ ` E(S0)→ 0 = Sz. (→ I.)

12. Γ ` ¬(0 = Sz). (∀E and A2.)

13. Γ ` ¬E(S0). (→ E2.)

CHAPTER 2. MATHEMATICAL LOGIC 50

One thing to notice about the formal argument is how E(S0) moves in
and and out of the left-hand side of the turnstile in the middle of the proof.
This is a pretty common trick, and is what is going on whenever you read
a proof that says something like “suppose P holds” or “consider the case
where P holds.” Being able to just carry P (in this case, E(S0)) around as
an assumption saves a lot of writing “if P” over and over again, and more
formally is what allows us to unpack P → Q and apply inference rules to Q.

2.6.3 A more general theorem

So far we have only proved results about a few specific numbers. Can we say
anything about all numbers? Let’s try to prove the following theorem:

Theorem 2.6.2. For all x, if x is even, SSSSx is even.

Proof. Let x be even. Then SSx is even (Axiom A1), and so SS(SSx) =
SSSSx is also even.

Written out using natural-deduction inference rules (with some of the
more boring steps omitted), the proof would look like this:

1. Γ, Ex ` (∃y : Ey ∧ SSx = SSy)→ E(SSx). (Axiom A1, ∀E, ∨E1.)

2. Γ, Ex ` Ex.

3. Γ, Ex ` SSx = SSx. (Reflexivity of =.)

4. Γ, Ex ` Ex ∧ SSx = SSx. (∧I applied to previous two steps.)

5. Γ, Ex ` ∃y : Ey ∧ SSy = SSx. (Let y = x.)

6. Γ, Ex ` E(SSx). (Modus ponens!)

7. Γ, Ex ` E(SSSSx). (Do it all again to show E(SSx) → E(SSSSx).
This is the boring part we promised to omit.)

8. Γ ` Ex→ E(SSSSx). (→ I.)

9. Γ ` ∀x : Ex→ E(SSSSx). (∀I).

If we had to write all the boring parts out, it might make sense to first
prove a lemma ∀x : Ex→ E(SSx) and then just apply the lemma twice.

The instruction “let x be even” is doing a lot of work in the condensed
proof: it is introducing both a new name x that we will use for the Universal
Generalization rule ∀E, and the assumption that x is even that we will use

CHAPTER 2. MATHEMATICAL LOGIC 51

for the Deduction Theorem → E. Note that we can’t apply ∀E until we’ve
moved the assumption Ex out of the left-hand side of the turnstile, because
Universal Generalization only works if x is not a name mentioned in the
assumptions.

2.6.4 Something we can’t prove

One thing we probably know about the natural numbers is that if x is even,
then x+ 1 is odd, and vice versa. As a theorem this would look like

Claim 2.6.3. For all x, Ex↔ ¬E(Sx).

Unfortunately our axiom system is not strong enough to prove this claim.
Here is a model that satisfies the axioms but for which the claim fails:

1. Include the ordinary natural numbers 0, S0, SS0, etc. with E0,¬E(S0), E(SS0),
etc.

2. Include an extra unnatural number u such that u = Su and Eu holds.

It turns out that adding u doesn’t violate any of the axioms. Axiom A1
is happy, because Eu↔ E(SSu) since both u and SSu are even. Axiom A2
is happy because 0 6= Su. Axiom A3 is happy because if Sx = Sy ↔ x = y
whenever x and y are both natural or both u, and also if one is natural and
one is u (because in this case Sx 6= Sy and x 6= y).

But: with u in the model, we have an object for which Eu and E(Su)
are both true, contradicting the claim! So if we want the successor to any
even number to be odd, we are going to need a bigger set of axioms.

What we are really missing here is the Axiom Schema of Induction,
which says that if P (0) and ∀x : P (x) → P (Sx), then ∀x : P (x). Note
that throwing in the Axiom Schema of Induction actually requires adding
infinitely many axioms, since we get a distinct axiom for each choice of
formula P .

Chapter 3

Set theory

Set theory is the dominant foundation for mathematics. The idea is that
everything else in mathematics—numbers, functions, etc.—can be written in
terms of sets, so that if you have a consistent description of how sets behave,
then you have a consistent description of how everything built on top of
them behaves. If predicate logic is the machine code of mathematics, set
theory would be assembly language.

The nice thing about set theory is that it requires only one additional
predicate on top of the standard machinery of predicate logic. This is the
membership or element predicate ∈, where x ∈ S means that x is an
element of S. Here S is a set—a collection of elements—and the identify of
S is completely determined by which x satisfy x ∈ S. Every other predicate
in set theory can be defined in terms of ∈.

We’ll describe two versions of set theory below. The first, naive set
theory, treats any plausible collection of elements as a set. This turns out
to produce some unfortunate paradoxes, so most mathematics is built on a
more sophisticated foundation known as axiomatic set theory. Here we
can only use those sets whose existence we can prove using a standard list of
axioms. But the axioms are chosen so that all the normal things we might
want to do with sets in naive set theory are explicitly possible.

3.1 Naive set theory
Naive set theory is the informal version of set theory that corresponds to
our intuitions about sets as unordered collections of objects (called elements)
with no duplicates. An element of a set may also be a set (in which case it
contains its own elements), or it may just be some object that is not a set

52

CHAPTER 3. SET THEORY 53

(also known as an urelement, which is German for “primitive element”).
A set can be written explicitly by listing its elements using curly braces:

• {} = the empty set ∅, which has no elements.

• {Moe,Curly,Larry} = the Three Stooges.

• {0, 1, 2, . . .} = N, the natural numbers. Note that we are relying on
the reader guessing correctly how to continue the sequence here.

• {{} , {0} , {1} , {0, 1} , {0, 1, 2} , 7} = a set of sets of natural numbers,
plus a stray natural number that is directly an element of the outer
set.

Membership in a set is written using the ∈ symbol (pronounced “is an
element of,” “is a member of,” or just “is in”). So we can write Moe ∈ the
Three Stooges or 4 ∈ N. We can also write 6∈ for “is not an element of,” as
in Moe 6∈ N, and the reversed symbol 3 for “has as an element,” as in N 3 4.

A fundamental axiom in set theory (the Axiom of Extensionality; see
§3.4) is that the only distinguishing property of a set is its list of members:
if two sets have the same members, they are the same set.

For nested sets like {{1}}, ∈ represents only direct membership: the
set {{1}} only has one element, {1}, so 1 6∈ {{1}}. This can be con-
fusing if you think of ∈ as representing the English “is in,” because if
I put my lunch in my lunchbox and put my lunchbox in my backpack,
then my lunch is in my backpack. But my lunch is not an element of
{{my lunch} ,my textbook,my slingshot}. In general, ∈ is not transitive
(see §9.3): it doesn’t behave like ≤ unless there is something very unusual
about the set you are applying it to. There is also no standard notation for
being a deeply-buried element of an element of an element (etc.) of some set.

In addition to listing the elements of a set explicitly, we can also define
a set by set comprehension, where we give a rule for how to generate
all of its elements. This is pretty much the only way to define an infinite
set without relying on guessing, but can be used for sets of any size. Set
comprehension is usually written using set-builder notation, as in the
following examples:

• {x | x ∈ N ∧ x > 1 ∧ (∀y ∈ N : ∀z ∈ N : yz = x→ y = 1 ∨ z = 1)}= the
prime numbers.

• {2x | x ∈ N} = the even numbers.

• {x | x ∈ N ∧ x < 12} = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.

CHAPTER 3. SET THEORY 54

{x | 0 ≤ x ≤ 100, x = 1 (mod 2) }
begindisplaymath 2ex] [x | x <- [0..100], x ‘mod‘ 2 == 1]
begindisplaymath 2ex] [x for x in range(0,101) if x % 2 == 1]

Table 3.1: Set comprehension vs list comprehension. The first line gives the
set of odd numbers between 0 and 100 written using set-builder notation.
The other lines construct the odd numbers between 0 and 100 as ordered list
data structures in Haskell and Python respectively.

Some very high-level programming languages like Haskell or Python have
a similar mechanism called list comprehension which does pretty much
the same thing except the result is an ordered list. Table 3.1 gives some
examples of what this looks like.

Sometimes the original set that an element has to be drawn from is put
on the left-hand side of the vertical bar:

• {n ∈ N | ∃x, y, z ∈ N \ {0} : xn + yn = zn}. This is a fancy name for
{1, 2}, but this fact is not obvious [Wil95].

Using set comprehension, we can see that every set in naive set theory
is equivalent to some predicate. Given a set S, the corresponding predicate
is x ∈ S, and given a predicate P , the corresponding set is {x | Px}. But
watch out for Russell’s paradox: what is {S | S 6∈ S}?

3.2 Operations on sets
If we think of sets as representing predicates, each logical connective gives
rise to a corresponding operation on sets:

• A ∪B = {x | x ∈ A ∨ x ∈ B}. The union of A and B.

• A ∩B = {x | x ∈ A ∧ x ∈ B}. The intersection of A and B.

• A \B = {x | x ∈ A ∧ x 6∈ B}. The set difference of A and B.

• A4B = {x | x ∈ A⊕ x ∈ B}. The symmetric difference of A and
B.

(Of these, union and intersection are the most important in practice.)
Corresponding to implication is the notion of a subset:

• A ⊆ B (“A is a subset of B”) if and only if ∀x : x ∈ A→ x ∈ B.

CHAPTER 3. SET THEORY 55

As with ∈, ⊆ can be reversed: A ⊇ B means that A is a superset of B,
which is the same as saying B ⊆ A. We can also write A 6⊆ B to say that A
is a not a subset of B, and the rather awkward-looking A (B to say that A
is a proper subset of B, meaning that A ⊆ B but A 6= B. (The standard
version A ⊆ B allows the case A = B.)

Sometimes one says A is contained in B if A ⊆ B. This is one of two
senses in which A can be “in” B—it is also possible that A is in fact an
element of B (A ∈ B). For example, the set A = {12} is an element of the
set B = {Moe,Larry,Curly, {12}}, but A is not a subset of B, because A’s
element 12 is not an element of B. Usually we will try to reserve “is in” for
∈ and “is contained in” for ⊆, but it’s safest to use the symbols (or “is an
element/subset of”) to avoid any possibility of ambiguity.

Finally we have the set-theoretic equivalent of negation:

• Ā = {x | x 6∈ A}. The set Ā is known as the complement of A.

If we allow complements, we are necessarily working inside some fixed
universe, since the complement U = ∅̄ of the empty set contains all possible
objects. This raises the issue of where the universe comes from. One approach
is to assume that we’ve already fixed some universe that we understand (e.g.
N), but then we run into trouble if we want to work with different classes
of objects at the same time. The set theory used in most of mathematics
is defined by a collection of axioms that allow us to construct, essentially
from scratch, a universe big enough to hold all of mathematics without
apparent contradictions while avoiding the paradoxes that may arise in
naive set theory. However, one consequence of this construction is that the
universe (a) much bigger than anything we might ever use, and (b) not a set,
making complements not very useful. The usual solution to this is to replace
complements with explicit set differences: U \A for some specific universe U
instead of Ā.

3.3 Proving things about sets
We have three predicates so far in set theory, so there are essentially three
positive things we could try to prove about sets:

1. Given x and S, show x ∈ S. This requires looking at the definition of
S to see if x satisfies its requirements, and the exact structure of the
proof will depend on what the definition of S is.

2. Given S and T , show S ⊆ T . Expanding the definition of subset, this
means we have to show that every x in S is also in T . So a typical

CHAPTER 3. SET THEORY 56

proof will pick an arbitrary x in S and show that it must also be an
element of T . This will involve unpacking the definition of S and using
its properties to show that x satisfies the definition of T .

3. Given S and T , show S = T . Typically we do this by showing S ⊆ T
and T ⊆ S separately. The first shows that ∀x : x ∈ S → x ∈ T ; the
second shows that ∀x : x ∈ T → x ∈ S. Together, x ∈ S → x ∈ T
and x ∈ T → x ∈ S gives x ∈ S ↔ x ∈ T , which is what we need for
equality.

There are also the corresponding negative statements:

1. For x 6∈ S, use the definition of S as before.

2. For S 6⊆ T , we only need a counterexample: pick any one element of S
and show that it’s not an element of T .

3. For S 6= T , prove one of S 6⊆ T or T 6⊆ S.

Note that because S 6⊆ T and S 6= T are existential statements rather
than universal ones, they tend to have simpler proofs.

Here are some examples, which we’ll package up as a lemma:

Lemma 3.3.1. The following statements hold for all sets S and T , and all
predicates P :

S ⊇ S ∩ T (3.3.1)
S ⊆ S ∪ T (3.3.2)
S ⊇ {x ∈ S | P (x)}S (3.3.3)
S = (S ∩ T) ∪ (S \ T) (3.3.4)

Proof. • (3.3.1) Let x be in S ∩ T . Then x ∈ S and x ∈ T , from the
definition of S ∩ T . It follows that x ∈ S. Since x was arbitrary, we
have that for all x in S ∩ T , x is also in T ; in other words, S ∩ T ⊆ T .

• (3.3.2). Let x be in S. Then x ∈ S ∨ x ∈ T is true, giving x ∈ S ∪ T .

• (3.3.3) Let x be in {x ∈ S | P (x)}. Then, by the definition of set
comprehension, x ∈ S and P (x). We don’t care about P (x), so we
drop it to just get x ∈ S.

• (3.3.4). This is a little messy, but we can solve it by breaking it down
into smaller problems.
First, we show that S ⊆ (S \ T) ∪ (S ∩ T). Let x be an element of S.
There are two cases:

CHAPTER 3. SET THEORY 57

1. If x ∈ T , then x ∈ (S ∩ T).
2. If x 6∈ T , then x ∈ (S \ T).

In either case, we have shown that x is in (S ∩ T)∪ (S \ T). This gives
S ⊆ (S ∩ T) ∪ (S \ T).
Conversely, we show that (S \ T) ∪ (S ∩ T) ⊆ S. Suppose that x ∈
(S \ T) ∪ (S ∩ T). Again we have two cases:

1. If x ∈ (S \ T), then x ∈ S and x 6∈ T .
2. If x ∈ (S ∩ T), then x ∈ S and x ∈ T .

In either case, x ∈ S.
Since we’ve shown that both the left-hand and right-hand sides of
(3.3.4) are subsets of each other, they must be equal.

Using similar arguments, we can show that properties of ∧ and ∨ that
don’t involve negation carry over to ∩ and ∪ in the obvious way. For example,
both operations are commutative and associative, and each distributes over
the other.

3.4 Axiomatic set theory
The problem with naive set theory is that unrestricted set comprehension
is too strong, leading to contradictions. Axiomatic set theory fixes this
problem by being more restrictive about what sets one can form. The axioms
most commonly used are known as Zermelo-Fraenkel set theory with
choice or ZFC. We’ll describe the axioms of ZFC below, but in practice
you mostly just need to know what constructions you can get away with.

The short version is that you can construct sets by (a) listing their
members, (b) taking the union of other sets, (c) taking the set of all subsets
of a set, or (d) using some predicate to pick out elements or subsets of some
set.1 The starting points for this process are the empty set ∅ and the set N
of all natural numbers (suitably encoded as sets). If you can’t construct a
set in this way (like the Russell’s Paradox set), odds are that it isn’t a set.

These properties follow from the more useful axioms of ZFC:
1Technically this only gives us Z, a weaker set theory than ZFC that omits Replacement

(Fraenkel’s contribution) and Choice.

CHAPTER 3. SET THEORY 58

Extensionality Any two sets with the same elements are equal.2

Existence The empty set ∅ is a set.3

Pairing Given sets x and y, {x, y} is a set.4

Union For any set of sets S = {x, y, z, . . .}, the set
⋃
S = x ∪ y ∪ z ∪ . . .

exists.5

Power set For any set S, the power set P(S) = {A | A ⊆ S} exists.6

Specification For any set S and any predicate P , the set {x ∈ S | P (x)}
exists.7 This is called restricted comprehension, and is an axiom
schema instead of an axiom, since it generates an infinite list of axioms,
one for each possible P . Limiting ourselves to constructing subsets
of existing sets avoids Russell’s Paradox, because we can’t construct
S = {x | x 6∈ x}. Instead, we can try to construct S = {x ∈ T | x 6∈ x},
but we’ll find that S isn’t an element of T , so it doesn’t contain itself
but also doesn’t create a contradiction.

Infinity There is a set that has ∅ as a member and also has x ∪ {x}
whenever it has x.8 This gives an encoding of N where ∅ represents
0 and x ∪ {x} represents x+ 1. Expanding out the x+ 1 rule shows
that each number is represented by the set of all smaller numbers, e.g.
3 = {0, 1, 2} = {∅, {∅} , {∅, {∅}}}, which has the nice property that
each number n is represented by a set with exactly n elements, and
that a < b can be represented by a ∈ b.9

Without this axiom, we only get finite sets.
(Technical note: the set whose existence is given by the Axiom of
Infinity may also contain some extra elements outside of N, but we can
strip them out—with some effort—using Specification.)

2∀x : ∀y : (x = y)↔ (∀z : z ∈ x↔ z ∈ y).
3∃x : ∀y : y 6∈ x.
4∀x : ∀y : ∃z : ∀q : q ∈ z ↔ q = x ∨ q = y.
5∀x : ∃y : ∀z : z ∈ y ↔ (∃q : z ∈ q ∧ q ∈ x).
6∀x : ∃y : ∀z : z ∈ y ↔ z ⊆ x.
7∀x : ∃y : ∀z : z ∈ y ↔ z ∈ x ∧ P (z).
8∃x : ∅ ∈ x ∧ ∀y ∈ x : y ∪ {y} ∈ x.
9Natural numbers represented in this was are called finite von Neumann ordinals.

These are a special case of the von Neumann ordinals, discussed in §3.5.5.4, which can
also represent values that are not finite.

CHAPTER 3. SET THEORY 59

There are three other axioms that don’t come up much in computer
science:

Foundation Every nonempty set A contains a set B with A∩B = ∅.10 This
rather technical axiom prevents various weird sets, such as sets that
contain themselves or infinite descending chains A0 3 A1 3 A2 3
Without it, we can’t do induction arguments11 once we get beyond N.

Replacement If S is a set, and R(x, y) is a predicate with the property
that ∀x : ∃!y : R(x, y), then {y | ∃x ∈ SR(x, y)} is a set.12 Like
comprehension, replacement is an axiom schema. Mostly used to
construct astonishingly huge infinite sets.

Choice For any set of nonempty sets S there is a function f that assigns
to each x in S some f(x) ∈ x. This axiom is unpopular in some
circles because it is non-constructive: it tells you that f exists, but
it doesn’t give an actual definition of f . But it’s too useful to throw
out.

Like everything else in mathematics, the particular system of axioms
we ended up with is a function of the history, and there are other axioms
that could have been included but weren’t. Some of the practical reasons
for including some axioms but not others are described in a pair of classic
papers by Maddy [Mad88a, Mad88b].

3.5 Cartesian products, relations, and functions
Sets are unordered: the set {a, b} is the same as the set {b, a}. Sometimes it
is useful to consider ordered pairs (a, b), where we can tell which element
comes first and which comes second. These can be encoded as sets using the
rule (a, b) = {{a} , {a, b}}, which was first proposed by Kuratowski [Kur21,
Definition V].13

10∀x 6= ∅ : ∃y ∈ x : x ∩ y = ∅.
11See Chapter 5.
12(∀x : ∃!y : R(x, y))→ ∀z : ∃q : ∀r : r ∈ q ↔ (∃s ∈ z : R(s, r)).
13This was not the only possible choice. Kuratowski cites a previous encoding suggested

by Hausdorff [Hau14] of (a, b) as {{a, 1} , {b, 2}}, where 1 and 2 are tags not equal to a or
b. He argues that this definition “seems less convenient to me” than {{a} , {a, b}}, because
it requires tinkering with the definition if a or b turn out to be equal to 1 or 2. This is a
nice example of how even though mathematical definitions arise through convention, some
definitions are easier to use than others.

CHAPTER 3. SET THEORY 60

Given setsA andB, theirCartesian productA×B is the set {(x, y) | x ∈ A ∧ y ∈ B},
or in other words the set of all ordered pairs that can be constructed
by taking the first element from A and the second from B. If A has n
elements and B has m, then A × B has nm elements.14 For example,
{1, 2} × {3, 4} = {(1, 3), (1, 4), (2, 3), (2, 4)}.

Because of the ordering, Cartesian product is not commutative in general.
We usually have A×B 6= B ×A. (Exercise: when are they equal?)

The existence of the Cartesian product of any two sets can be proved
using the axioms we already have: if (x, y) is defined as {{x} , {x, y}}, then
P(A ∪B) contains all the necessary sets {x} and {x, y} , and P(P(A ∪B))
contains all the pairs {{x} , {x, y}}. It also contains a lot of other sets we
don’t want, but we can get rid of them using Specification.

A special class of relations are functions. A function from a domain A
to a codomain15 B is a relation on A and B (i.e., a subset of A×B such
that every element of A appears on the left-hand side of exactly one ordered
pair. We write f : A → B as a short way of saying that f is a function
from A to B, and for each x ∈ A write f(x) for the unique y ∈ B with
(x, y) ∈ f .16

The set of all functions from A to B is written as BA: note that the order
of A and B is backwards here from A→ B. Since this is just the subset of
P(A × B) consisting of functions as opposed to more general relations, it
exists by the Power Set and Specification axioms.

When the domain of a function is is finite, we can always write down a
list of all its values. For infinite domains (e.g. N), almost all functions are
impossible to write down, either as an explicit table (which would need to be
infinitely long) or as a formula (there aren’t enough formulas). Most of the
time we will be interested in functions that have enough structure that we
can describe them succinctly, for obvious practical reasons. But in a sense
these other, ineffable functions still exist, so we use a definition of a function
that encompasses them.

Often, a function is specified not by writing out some huge set of ordered
pairs, but by giving a rule for computing f(x). An example: f(x) = x2.

14In fact, this is the most direct way to define multiplication on N, and pretty much the
only sensible way to define multiplication for infinite cardinalities; see §11.1.5.

15The codomain is sometimes called the range, but most mathematicians will use range
for {f(x) | x ∈ A}, which may or may not be equal to the codomain B, depending on
whether f is or is not surjective.

16Technically, knowing f alone does not tell you what the codomain is, since some
elements of B may not show up at all. This can be fixed by representing a function as a
pair (f,B), but it’s not something most people worry about.

CHAPTER 3. SET THEORY 61

Particular trivial functions can be defined in this way anonymously; another
way to write f(x) = x2 is as the anonymous function x 7→ x2.

3.5.1 Examples of functions

• f(x) = x2. Note: this single rule gives several different functions, e.g.
f : R → R, f : Z → Z, f : N → N, f : Z → N. Changing the domain
or codomain changes the function.

• f(x) = x+ 1.

• Floor and ceiling functions: when x is a real number, the floor of x
(usually written bxc) is the largest integer less than or equal to x and
the ceiling of x (usually written dxe) is the smallest integer greater
than or equal to x. E.g., b2c = d2e = 2, b2.337c = 2, d2.337e = 3.

• The function from {0, 1, 2, 3, 4} to {a, b, c} given by the following table:
0 a
1 c
2 b
3 a
4 b

3.5.2 Sequences

Functions let us define sequences of arbitrary length: for example, the infinite
sequence x0, x1, x2, . . . of elements of some set A is represented by a function
x : N → A, while a shorter sequence (a0, a1, a2) would be represented by
a function a : {0, 1, 2} → A. In both cases the subscript takes the place
of a function argument: we treat xn as syntactic sugar for x(n). Finite
sequences are often called tuples, and we think of the result of taking
the Cartesian product of a finite number of sets A × B × C as a set of
tuples (a, b, c), even though the actual structure may be ((a, b), c) or (a, (b, c))
depending on which product operation we do first.

We can think of the Cartesian product of k sets (where k need not be 2)
as a set of sequences indexed by the set {1 . . . k} (or sometimes {0 . . . k − 1}).
Technically this means that A×B ×C (the set of functions from {1, 2, 3} to
A∪B ∪C with the property that for each function f ∈ A×B×C, f(1) ∈ A,
f(2) ∈ B, and f(3) ∈ C) is not the same as (A × B) × C (the set of all
ordered pairs whose first element is an ordered pair in A × B and whose
second element is in C) or A× (B × C) (the set of ordered pairs whose first

CHAPTER 3. SET THEORY 62

element is in A and whose second element is in B ×C). This distinction has
no practical effect and so we typically ignore it; the technical justification
for this is that the three different representations are all isomorphic in the
sense that a translation exists between each pair of them that preserves their
structure.

A special case is the Cartesian product of no sets. This is just the set
containing a single element, the empty sequence.

Cartesian products over indexed collections of sets can be written using
product notation (see §6.2), as in

n∏
i=1

An

or even ∏
x∈R

Ax.

3.5.3 Functions of more (or less) than one argument

If f : A × B → C, then we write f(a, b) for f((a, b)). In general we can
have a function with any number of arguments (including 0); a function of k
arguments is just a function from a domain of the form A1 ×A2 × . . . Ak to
some codomain B.

3.5.4 Composition of functions

Two functions f : A → B and g : B → C can be composed to give a
composition g ◦ f . This is a function from A to C defined by (g ◦ f)(x) =
g(f(x)). Composition is often implicit in definitions of functions: the function
x 7→ x2 + 1 is the composition of two functions x 7→ x+ 1 and x 7→ x2.

3.5.5 Functions with special properties

We can classify functions f : A→ B based on how many elements x of the
domain A get mapped to each element y of the codomain B. If every y is
the image of at least one x, f is surjective. If every y is the image of at
most one x, f is injective. If every y is the image of exactly one x, f is
bijective. 17 These concepts are formalized below.

17These terms, which are generally attributed to the group of mathematicians who
published under the name Bourbaki [Bou70], are now pretty well established and have the
advantage of being hard to confuse with each other. An older convention in English was

CHAPTER 3. SET THEORY 63

3.5.5.1 Surjections

A function f : A → B that covers every element of B is called onto,
surjective, or a surjection. This means that for any y in B, there exists
some x in A such that y = f(x). An equivalent way to show that a function is
surjective is to show that its range {f(x) | x ∈ A} is equal to its codomain.

For example, the function f(x) = x2 from N to N is not surjective,
because its range includes only perfect squares. The function f(x) = x+ 1
from N to N is not surjective because its range doesn’t include 0. However,
the function f(x) = x+ 1 from Z to Z is surjective, because for every y in Z
there is some x in Z such that y = x+ 1.

3.5.5.2 Injections

If f : A → B maps distinct elements of A to distinct elements of B (i.e.,
if x 6= y implies f(x) 6= f(y)), it is called one-to-one, injective, or an
injection. By contraposition, an equivalent definition is that f(x) = f(y)
implies x = y for all x and y in the domain. For example, the function
f(x) = x2 from N to N is injective. The function f(x) = x2 from Z to Z is
not injective (for example, f(−1) = f(1) = 1). The function f(x) = x+ 1
from N to N is injective.

3.5.5.3 Bijections

A function that is both surjective and injective is called a one-to-one cor-
respondence, bijective, or a bijection. Any bijection f has an inverse
function f−1; this is the function {(y, x) | (x, y) ∈ f}.

Of the functions we have been using as examples, only f(x) = x+ 1 from
Z to Z is bijective.

3.5.5.4 Bijections and counting

Bijections let us define the size of arbitrary sets without having some special
means to count elements. We say two sets A and B have the same size or
cardinality if there exists a bijection f : A↔ B.

Often it is convenient to have standard representatives of sets of a given
cardinality. A common trick is to use the von Neumann ordinals, which
are sets that are constructed recursively so that each contains all the smaller

to call surjective functions onto, injective functions one-to-one, and bijective functions
one-to-one correspondences. This can lead to confusing between injective and bijection
functions, so we’ll stick with the less confusing French-derived terminology.

CHAPTER 3. SET THEORY 64

ordinals as elements.18 The empty set ∅ represents 0, the set {0} represents
1, {0, 1} represents 2, and so on. The first infinite ordinal is ω = {0, 1, 2, . . .},
which is followed by ω + 1 = {0, 1, 2, . . . ;ω}, ω + 2 = {0, 1, 2, . . . ;ω, ω + 1},
and so forth; there are also much bigger ordinals like ω2 (which looks like
ω many copies of ω stuck together), ωω (which is harder to describe, but
can be visualized as the set of infinite sequences of natural numbers with an
appropriate ordering), and so on. Given any collection of ordinals, it has a
smallest element, equal to the intersection of all elements: this means that
von Neumann ordinals are well-ordered (see §9.5.6). So we can define the
cardinality |A| of a set A formally as the unique smallest ordinal B such that
there exists a bijection f : A↔ B.

This is exactly what we do when we do counting: to know that there
are 3 stooges, we count them off 0→ Moe, 1→ Larry, 2→ Curly, giving a
bijection between the set of stooges and 3 = {0, 1, 2}.

Because different infinite ordinals may have the same cardinality, infi-
nite cardinalities are generally not named for the smallest ordinal of that
cardinality, but get their own names. So the cardinality |N| of the naturals
is written as ℵ0, the next largest possible cardinality as ℵ1, etc. See §3.7.1
for more details.

3.6 Constructing the universe
With power set, Cartesian product, the notion of a sequence, etc., we can
construct all of the standard objects of mathematics. For example:

Integers The integers are the set Z = {. . . ,−2,−1, 0,−1, 2, . . .}. We rep-
resent each integer z as an ordered pair (x, y), where x = 0 ∨ y = 0;
formally, Z = {(x, y) ∈ N× N | x = 0 ∨ y = 0}. The interpretation of
(x, y) is x − y; so positive integers z are represented as (z, 0) while
negative integers are represented as (0,−z). It’s not hard to define
addition, subtraction, multiplication, etc. using this representation.

18The formal definition is that S is an ordinal if (a) every element of S is also a subset
of S; and (b) every subset T of S contains an element x with the property that x = y or
x ∈ y for all y ∈ T . In other words, every subset T of S has a minimal element with
respect to ∈. If we treat ∈ as <, this property makes S well-ordered (see §9.5.6). The
fact that every subset of S has a minimal element means that we can do induction on
S, since if there is some property that does not hold for all x in S, there must be some
minimal x for which it doesn’t hold. So if we can prove that ∀y < x : P (y) implies P (x),
then it must be the case that P holds for every element of S, because otherwise we get a
contradiction at the minimal x for which P does not hold.

CHAPTER 3. SET THEORY 65

Rationals The rational numbers Q are all fractions of the form p/q where
p is an integer, q is a natural number not equal to 0, and p and q have
no common factors. Each such fraction can be represented as a set
using an ordered pair (p, q). Operations on rationals are defined as you
may remember from grade school.

Reals The real numbers R can be defined in a number of ways, all of which
turn out to be equivalent. The simplest to describe is that a real number
x is represented by pair of sets {y ∈ Q | y < x} and {y ∈ Q | y ≥ x};
this is known as a Dedekind cut [Ded01]. Formally, a Dedekind cut
is any pair of subsets (S, T) of Q with the properties that (a) S and
T partition Q, meaning that S ∩ T = ∅ and S ∪ T = Q; (b) every
element of S is less than every element of T (∀s ∈ S ∀t ∈ T : s < t);
and (c) S contains no largest element (∀x ∈ S ∃y ∈ S : x < y). Note
that real numbers in this representation may be hard to write down.
A simpler but equivalent representation is to drop T , since it is just
Q \ S: this gives use a real number for any proper subset S of Q
that has no largest element and is downward closed, meaning that
x < y ∈ S implies x ∈ S. Real numbers this representation may still
be hard to write down.
More conventionally, a real number can be written as an infinite decimal
expansion like

π ≈ 3.14159265358979323846264338327950288419716939937510582 . . . ,

which is a special case of a Cauchy sequence that gives increasingly
good approximations to the actual real number the further along you
go.

We can also represent standard objects of computer science:

Deterministic finite state machines A deterministic finite state ma-
chine is a tuple (Σ, Q, q0, δ, Qaccept) where Σ is an alphabet (some
finite set), Q is a state space (another finite set), q0 ∈ Q is an initial
state, δ : Q×Σ→ Q is a transition function specifying which state
to move to when processing some symbol in Σ, and Qaccept ⊆ Q is
the set of accepting states. If we represent symbols and states as
natural numbers, the set of all deterministic finite state machines is
then just a subset of P(N) × P(N) × N ×

(
NN×N

)
× P(N) satisfying

some consistency constraints.

CHAPTER 3. SET THEORY 66

3.7 Sizes and arithmetic
We can compute the size of a set by explicitly counting its elements; for exam-
ple, |∅| = 0, |{Larry,Moe,Curly}| = 3, and |{x ∈ N | x < 100 ∧ x is prime}| =
|{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}| =
25. But sometimes it is easier to compute sizes by doing arithmetic. We
can do this because many operations on sets correspond in a natural way to
arithmetic operations on their sizes. (For much more on this, see Chapter 11.)

Two sets A and B that have no elements in common are said to be
disjoint; in set-theoretic notation, this means A∩B = ∅. In this case we have
|A ∪B| = |A|+ |B|. The operation of disjoint union acts like addition for
sets. For example, the disjoint union of 2-element set {0, 1} and the 3-element
set {Wakko, Jakko,Dot} is the 5-element set {0, 1,Wakko, Jakko,Dot}.

The size of a Cartesian product is obtained by multiplication: |A×B| =
|A|·|B|. An example would be the product of the 2-element set {a, b} with the
3-element set {0, 1, 2}: this gives the 6-element set {(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}.
Even though Cartesian product is not generally commutative, swapping each
pair (a, b) to (b, a) is a bijection, so |A×B| = |B ×A|.

For power set, it is not hard to show that |P(S)| = 2|S|. This is a special
case of the size of AB, the set of all functions from B to A, which is |A||B|;
for the power set we can encode P(S) using 2S , where 2 is the special set
{0, 1}, and a subset T of S is encoded by the function that maps each x ∈ S
to 0 if x 6∈ T and 1 if x ∈ T .

3.7.1 Infinite sets

For infinite sets, we take the above properties as definitions of addition,
multiplication, and exponentiation of their sizes. The resulting system is
known as cardinal arithmetic, and the sizes that sets (finite or infinite)
might have are known as cardinal numbers.

The finite cardinal numbers are just the natural numbers: 0, 1, 2, 3,
The first infinite cardinal number is the size of the set of natural numbers,
and is written as ℵ0 (aleph-zero, aleph-null, or aleph-nought). The
next infinite cardinal number is ℵ1 (aleph-one): it might or might not be
the size of the set of real numbers, depending on whether you include the
Generalized Continuum Hypothesis in your axiom system.19

19The generalized continuum hypothesis says (essentially) that there aren’t any more
cardinalities out there in between the ones whose existence can be deduced from the other
axioms of set theory. A consequence of this is that there are no cardinalities between
|N| and |R|. An alternative notation exists if you don’t want to take a position on GCH:

CHAPTER 3. SET THEORY 67

Infinite cardinals can behave very strangely. For example:

• ℵ0+ℵ0 = ℵ0. In other words, it is possible to have two sets A and B that
both have the same size as N, take their disjoint union, and get another
set A + B that has the same size as N. To give a specific example,
let A = {2x | x ∈ N} (the even numbers) and B = {2x+ 1 | x ∈ N}
(the odd numbers). These have |A| = |B| = |N| because there is a
bijection between each of them and N built directly into their definitions.
It’s also not hard to see that A and B are disjoint, and that A∪B = N.
So |A| = |B| = |A|+ |B| in this case.
The general rule for cardinal addition is that κ+ λ = max(κ, λ) if at
least one of κ and λ is infinite. Sums of finite cardinals behave exactly
the way you expect.

• ℵ0 · ℵ0 = ℵ0. Example: A bijection between N × N and N using the
Cantor pairing function 〈x, y〉 = (x+y+1)(x+y)/2+y. The first few
values of this are 〈0, 0〉 = 0, 〈1, 0〉 = 2 ·1/2 + 0 = 1, 〈0, 1〉 = 2 ·1/2 + 1 =
2, 〈2, 0〉 = 3 · 2/2 + 0 = 3, 〈1, 1〉 = 3 · 2/2 + 1 = 4, 〈0, 2〉 = 3 · 2/2 + 2 = 5,
etc. The basic idea is to order all the pairs by increasing x+y, and then
order pairs with the same value of x+ y by increasing y. Eventually
every pair is reached.
The general rule for cardinal multiplication is that κ · λ = max(κ, λ) if
at least one of κ or λ is infinite. So κ · λ = κ+ λ if either is infinite (or
both are zero).

• N∗ = {all finite sequences of elements of N} has size ℵ0. One way
to do this to define a function recursively by setting f([]) = 0 and
f([first, rest]) = 1 + 〈first, f(rest)〉, where first is the first element of

this writes i0 (“beth-0”) for |N|, i1 (“beth-1”) for |R| = |P(N)|, with the general rule
ii+1 = 2ii . This avoids the issue of whether there exist sets with size between N and R,
for example. In my limited experience, only hard-core set theorists ever use i instead of
ℵ: in the rare cases where the distinction matters, most normal mathematicians will just
assume GCH, which makes ii = ℵi for all i.

CHAPTER 3. SET THEORY 68

the sequence and rest is all the other elements. For example,

f(0, 1, 2) = 1 + 〈0, f(1, 2)〉
= 1 + 〈0, 1 + 〈1, f(2)〉〉
= 1 + 〈0, 1 + 〈1, 1 + 〈2, 0〉〉〉
= 1 + 〈0, 1 + 〈1, 1 + 3〉〉 = 1 + 〈0, 1 + 〈1, 4〉〉
= 1 + 〈0, 1 + 19〉
= 1 + 〈0, 20〉
= 1 + 230
= 231.

This assigns a unique element of N to each finite sequence, which is
enough to show |N∗| ≤ |N|. With some additional effort one can show
that f is in fact a bijection, giving |N∗| = |N|.

3.7.2 Countable sets

The sets N, N2, and N∗ all have the property of being countable, which
means that they can be put into a bijection with N or one of its subsets.
Countability of N∗ means that anything you can write down using finitely
many symbols (even if they are drawn from an infinite but countable alphabet)
is countable. This has a lot of applications in computer science: one of them
is that the set of all computer programs in any particular programming
language is countable.

3.7.3 Uncountable sets

Exponentiation is different. We can easily show that 2ℵ0 6= ℵ0, or equivalently
that there is no bijection between P(N) and N. This is done using Cantor’s
diagonalization argument, which appears in the proof of the following
theorem.

Theorem 3.7.1. Let S be any set. Then there is no surjection f : S → P(S).

Proof. Let f : S → P(S) be some function from S to subsets of S. We’ll
construct a subset of S that f misses, thereby showing that f is not a
surjection. Let A = {x ∈ S | x 6∈ f(x)}. Suppose A = f(y). Then y ∈ A↔
y 6∈ A, a contradiction.20

20Exercise: Why does A exist even though the Russell’s Paradox set doesn’t?

CHAPTER 3. SET THEORY 69

Since any bijection is also a surjection, this means that there’s no bijection
between S and P(S) either, implying, for example, that |N| is strictly less
than |P(N)|.

(On the other hand, it is the case that
∣∣∣NN

∣∣∣ =
∣∣∣2N∣∣∣, so things are still

weird up here.)
Sets that are larger than N are called uncountable. A quick way to

show that there is no surjection from A to B is to show that A is countable
but B is uncountable. For example:

Corollary 3.7.2. There are functions f : N→ {0, 1} that are not computed
by any computer program.

Proof. Let P be the set of all computer programs that take a natural number
as input and always produce 0 or 1 as output (assume some fixed language),
and for each program p ∈ P , let fp be the function that p computes. We’ve
already argued that P is countable (each program is a finite sequence drawn
from a countable alphabet), and since the set of all functions f : N →
{0, 1} = 2N has the same size as P(N), it’s uncountable. So some f gets
missed: there is at least one function from Nto {0, 1} that is not equal to fp
for any program p.

The fact that there are more functions from N to N than there are
elements of N is one of the reasons why set theory (slogan: “everything is
a set”) beat out lambda calculus (slogan: “everything is a function from
functions to functions”) in the battle over the foundations of mathematics.
And this is why we do set theory in CPSC 202 and lambda calculus (disguised
as Scheme) in CPSC 201.

3.8 Further reading
See [Ros12, §§2.1–2.2], [Big02, Chapter 2], or [Fer08, §1.3, §1.5].

Chapter 4

The real numbers

The real numbers R are the subject of high-school algebra and most
practical mathematics. Some important restricted classes of real numbers
are the naturals N = 0, 1, 2, . . . , the integers Z = . . . ,−2,−1, 0, 1, 2, . . . ,
and the rationals Q, which consist of all real numbers that can be written
as ratios of integers p/q, otherwise known as fractions.

The rationals include 1, 3/2, 22/7,−355/113, an so on, but not some
common mathematical constants like e ≈ 2.718281828 . . . or π ≈ 3.141592
Real numbers that are not rational are called irrational. There is no single-
letter abbreviation for the irrationals.

The typeface used for N, Z, Q, and R is called blackboard bold and
originates from the practice of emphasizing a letter on a blackboard by
writing it twice. Some writers just use ordinary boldface: N, etc., but this
does not scream out “this is a set of numbers” as loudly as blackboard bold.
You may also see blackboard bold used for the complex numbers C, which
are popular in physics and engineering, and for some more exotic number
systems like the quaternions H,1 which are sometimes used in graphics, or
the octonions O, which exist mostly to see how far complex numbers can
be generalized.

Like any mathematical structure, the real numbers are characterized by
a list of axioms, which are the basic facts from which we derive everything
we know about the reals. There are many equivalent ways of axiomatizing
the real numbers; we will give one here. Many of these properties can also
be found in [Fer08, Appendix B]. These should mostly be familiar to you
from high-school algebra, but we include them here because we need to know

1Why H? The rationals already took Q (for “quotient”), so the quaternions are
abbreviated by the initial of their discoverer, William Rowan Hamilton.

70

CHAPTER 4. THE REAL NUMBERS 71

what we can assume when we want to prove something about reals, and also
because it lets us sneaky in definitions of various algebraic structures like
groups and fields that will turn out to be useful later.

4.1 Field axioms
The real numbers are a field, which means that they support the operations
of addition +, multiplication ·, and their inverse operations subtraction −
and division /. The behavior of these operations is characterized by the field
axioms.

4.1.1 Axioms for addition

Addition in a field satisfies the axioms of a commutative group (often
called an abelian group, after Niels Henrik Abel, an early nineteenth-
century mathematician). These characterize the behavior of the addition
operation + and sums of the form a+ b (“a plus b”).

Axiom 4.1.1 (Commutativity of addition). For all numbers,

a+ b = b+ a. (4.1.1)

Any operation that satisfies Axiom 4.1.1 is called commutative. Com-
mutativity lets us ignore the order of arguments to an operation. Later, we
will see that multiplication is also commutative.

Axiom 4.1.2 (Associativity of addition). For all numbers,

a+ (b+ c) = (a+ b) + c. (4.1.2)

An operation that satisfies Axiom 4.1.2 is called associative. Asso-
ciativity means we don’t have to care about how a sequence of the same
associative operation is parenthesized, letting us write just a + b + c for
a+ (b+ c) = (a+ b) + c.2

2A curious but important practical fact is that addition is often not associative in
computer arithmetic. This is because computers (and calculators) approximate real
numbers by floating-point numbers, which only represent the some limited number
of digits of an actual real number in order to make it fit in limited memory. This
means that low-order digits on very large numbers can be lost to round-off error. So
a computer might report (1000000000000 + −1000000000000) + 0.00001 = 0.00001 but
1000000000000 + (−1000000000000 + 0.00001) = 0.0. Since we don’t have to write any
programs in this class, we will just work with actual real numbers, and not worry about
such petty numerical issues.

CHAPTER 4. THE REAL NUMBERS 72

Axiom 4.1.3 (Additive identity). There exists a number 0 such that, for
all numbers a,

a+ 0 = 0 + a = a. (4.1.3)

An object that satisfies the condition a+0 = 0+a = a for some operation
is called an identity for that operation. Later we will see that 1 is an identity
for multiplication.

It’s not hard to show that identities are unique:

Lemma 4.1.4. Let 0′ + a = a+ 0′ = a for all a. Then 0′ = 0.

Proof. Compute 0′ = 0′ + 0 = 0. (The first equality holds by the fact that
a = a+ 0 for all a and the second from the assumption that 0′ + a = a for
all a.)

Axiom 4.1.5 (Additive inverses). For each a, there exists a number −a,
such that

a+ (−a) = (−a) + a = 0. (4.1.4)

For convenience, we will often write a + (−b) as a − b (“a minus b”).
This gives us the operation of subtraction. The operation that returns −a
given a is called negation and −a can be read as “negative a,” “minus
a”,3 or the “negation of a.”

Like identities, inverses are also unique:

Lemma 4.1.6. If a′ + a = a+ a′ = 0, then a′ = −a.

Proof. Starting with 0 = a′ + a, add −a on the right to both sides to get
−a = a′ + a+−a = a′.

4.1.2 Axioms for multiplication

Multiplication in a field satisfies the axioms of a commutative group, if the
additive identity 0 is excluded.

For convenience4, the multiplication operation · is often omitted, allowing
us to write ab for a · b. We will use this convention when it will not cause
confusion.

3Warning: Some people will get annoyed with you over “minus a” and insist on reserving
“minus” for the operation in a− b. In extreme cases, you may see −a typeset differently:
-a. Pay no attention to these people. Though not making the distinction makes life more
difficult for calculator designers and compiler writers, as a working mathematician you are
entitled to abuse notation by using the same symbol for multiple purposes when it will
not lead to confusion.

4Also called “laziness.”

CHAPTER 4. THE REAL NUMBERS 73

Axiom 4.1.7 (Commutativity of multiplication). For all numbers,

ab = ba. (4.1.5)

Axiom 4.1.8 (Associativity of multiplication). For all numbers,

a(bc) = (ab)c. (4.1.6)

Axiom 4.1.9 (Multiplicative identity). There exists a number 1 6= 0 such
that, for all numbers a,

a · 1 = 1 · a = a. (4.1.7)

We insist that 1 6= 0 because we want Axiom 4.1.9 to hold in R \ {0}.
This also has the beneficial effect of preventing us from having R = {0},
which would otherwise satisfy all of our axioms.

Since the only difference between the multiplicative identity and the
additive identity is notation, Lemma 4.1.4 applies here as well: if there is
any 1′ such that a · 1′ = 1′ · a = a for all a, then 1′ = 1.

Axiom 4.1.10 (Multiplicative inverses). For every a except 0, there exists
a number a−1, such that

a · a−1 = a−1 · a = 1. (4.1.8)

Lemma 4.1.6 applies here to show that a−1 is also unique for each a.
For convenience, we will often write a · b−1 as a/b or the vertical version

a
b . This gives us the operation of division. The expression a/b or a

b is
pronounced “a over b” or (especially in elementary school, whose occupants
are generally not as lazy as full-grown mathematicians) “a divided by b.”
Some other notations for this operation are a÷ b and a : b. These are also
mostly used in elementary school.5

Note that because 0 is not guaranteed to have an inverse,6 the meaning
of a/0 is not defined.

The number a−1, when it does exist, is often just called the inverse of a
or sometimes “inverse a.” (The ambiguity that might otherwise arise with the
additive inverse −a is avoided by using negation for −a.) The multiplicative
inverse a−1 can also be written using the division operation as 1/a.

5Using a colon for division is particularly popular in German-speaking countries, where
the “My Dear Aunt Sally” rule for remembering that multiplication and division bind tighter
than addition and subtraction becomes the more direct Punktrechnung vor Strichrech-
nung—“point reckoning before stroke reckoning.”

6In fact, once we get a few more axioms, terrible things will happen if we try to make 0
have an inverse.

CHAPTER 4. THE REAL NUMBERS 74

4.1.3 Axioms relating multiplication and addition

Axiom 4.1.11 (Distributive law). For all a, b, and c,

a · (b+ c) = ab+ ac (4.1.9)
(a+ b) · c = ac+ bc (4.1.10)

Since multiplication is commutative, we technically only need one of
(4.1.9) and (4.1.10), but there are other structures we will see called rings
that satisfy the distributive law without having a commutative multiplication
operation, so it’s safest to include both.

The additive identity 0 also has a special role in multiplication, which is
a consequence of the distributive law: it’s an annihilator:
Lemma 4.1.12. For all a,

a · 0 = 0 · a = 0. (4.1.11)

Proof. Because 0 = 0 + 0, we have a · 0 = a · (0 + 0) = a · 0 + a · 0. But then
adding −(a · 0) to both sides gives 0 = a · 0.

Annihilation is why we don’t want to define 0−1, and thus won’t allow
division by zero. If there were a real number that was 0−1, then for any a
and b we would have:

a · 0 = b · 0 = 0
(a · 0) · 0−1 = (b · 0) · 0−1

a · (0 · 0−1) = b · (0 · 0−1)
a · 1 = b · 1
a = b.

(Exercise: which axiom is used at each step in this proof?)
In particular, we would get 1 = 0, contradicting Axiom 4.1.9.
A similar argument shows that

Lemma 4.1.13. If a · b = 0, then a = 0 or b = 0.
Proof. Suppose a · b = 0 but a 6= 0.7 Then a has an inverse a−1. So we can
compute

a · b = 0 (4.1.12)
a−1 · a · b = a−1 · 0 (4.1.13)

b = 0. (4.1.14)
7This is an example of the proof strategy where we show P ∨Q by assuming ¬P and

proving Q.

CHAPTER 4. THE REAL NUMBERS 75

Another consequence of the distributive law is that we can determine
how multiplication interacts with negation. You may recall being taught at
an impressionable age that

a · (−b) = −(ab), (4.1.15)
(−a) · b = −(ab), (4.1.16)

and

(−a) · (−b) = ab. (4.1.17)

Like annihilation, these are not axioms—or at least, we don’t have to include
them as axioms if we don’t want to. Instead, we can prove them directly
from axioms and theorems we’ve already got. For example, here is a proof
of (4.1.15):

a · 0 = 0
a · (b+ (−b)) = 0
ab+ a · (−b) = 0

−(ab) + (ab+ a · (−b)) = −(ab)
(−(ab) + ab) + a · (−b) = −(ab)

0 + a · (−b) = −(ab)
a · (−b) = −(ab).

Similar proofs can be given for (4.1.16) and (4.1.17).
A special case of this is that multiplying by −1 is equivalent to negation:

Corollary 4.1.14. For all a,

(−1) · a = −a. (4.1.18)

Proof. Using (4.1.17), (−1) · a = −(1 · a) = −a.

4.1.4 Other algebras satisfying the field axioms

The field axioms so far do not determine the real numbers. They also hold for
any number of other fields, including the rationals Q, the complex numbers
C, and various finite fields such as the integers modulo a prime p (written as
Zp; we’ll see more about these in Chapter 14).

CHAPTER 4. THE REAL NUMBERS 76

They do not hold for the integers Z (which don’t have multiplicative
inverses) or the natural numbers N (which don’t have additive inverses either).
This means that Z and N are not fields, although they are examples of weaker
algebraic structures (a ring in the case of Z and a semiring in the case of
N).

In order to get the reals, we will need a few more axioms.

4.2 Order axioms
Unlike C and Zp (but like Q), the real numbers are an ordered field,
meaning that in addition to satisfying the field axioms, there is a relation ≤
that satisfies the axioms:

Axiom 4.2.1 (Comparability). a ≤ b or b ≤ a.

Axiom 4.2.2 (Antisymmetry). If a ≤ b and b ≤ a, then a = b.

Axiom 4.2.3 (Transitivity). If a ≤ b and b ≤ c, then a ≤ c.

Axiom 4.2.4 (Translation invariance). If a ≤ b, then a+ c ≤ b+ c.

Axiom 4.2.5 (Scaling invariance). If a ≤ b and 0 ≤ c, then a · c ≤ b · c.

The first three of these mean that ≤ is a total order (see §9.5.5). The
other axioms describe how ≤ interacts with addition and multiplication.

For convenience, we define a < b as shorthand for a ≤ b and a 6= b, and
define reverse operations a ≥ b (meaning b ≤ a) and a > b (meaning b < a).
If a > 0, we say that a is positive. If a < 0, it is negative. If a ≥ 0, it is
non-negative. Non-positive can be used to say a ≤ 0, but this doesn’t
seem to come up as much as non-negative.

Other properties of ≤ can be derived from these axioms.

Lemma 4.2.6 (Reflexivity). For all x, x ≤ x.

Proof. Apply comparability with y = x.

Lemma 4.2.7 (Trichotomy). Exactly one of x < y, x = y, or x > y holds.

Proof. First, let’s show that at least one holds. If x = y, we are done.
Otherwise, suppose x 6= y. From comparability, we have x ≤ y or y ≤ x.
Since x 6= y, this gives either x < y or x > y.

Next, observe that x = y implies x 6< y and x 6> y, since x < y and x > y
are both defined to hold only when x 6= y. This leaves the possibility that
x < y and x > y. But then x ≤ y and y ≤ x, so by anti-symmetry, x = y,
contradicting our assumption. So at most one holds.

CHAPTER 4. THE REAL NUMBERS 77

Trichotomy lets us treat, for example, x 6< y and x ≥ y as equivalent.

Lemma 4.2.8. If a ≥ 0, then −a ≤ 0.

Proof. Take a ≥ 0 and add −a to both sides (using Axiom 4.2.4) to get
0 ≥ −a.

Lemma 4.2.9. For all a and b, a ≥ b if and only if a− b ≥ 0.

Proof. Given a ≥ b, add −b to both sides to get a− b ≥ 0. Given a− b ≥ 0,
do the reverse by adding b to both sides.

Lemma 4.2.10. If a ≥ 0 and b ≥ 0, then a+ b ≥ 0.

Proof. From Lemma 4.2.8, a ≥ 0 implies 0 ≥ −a. So b ≥ 0 ≥ −a by
transitivity. Add a to both sides to get a+ b ≥ 0.

Theorem 4.2.11. If a ≥ b and c ≥ d, then a+ c ≥ b+ d.

Proof. From Lemma 4.2.9, a− b ≥ 0 and c− d ≥ 0. From Lemma 4.2.10, we
get (a− b)+(c−d) ≥ 0. Now add b+d to both sides to get a+ c ≥ b+d.

Lemma 4.2.12. If a ≤ b, then −b ≤ −a.

Proof. Subtract a+ b from both sides.

Theorem 4.2.13. If a ≤ b and c ≤ 0, then a · c ≥ b · c.

Proof. From Lemma 4.2.8, −c ≥ 0, so from Axiom 4.2.5, −c ·a ≤ −c · b. Now
apply Lemma 4.2.12 to get c · a ≥ c · b.

4.3 Least upper bounds
One more axiom is needed to characterize the reals. A subset S of R has
an upper bound if there is some x ∈ R such that y ≤ x for all y in S. It
has a least upper bound if there is a smallest z with this property: some
z such that (a) z is an upper bound on S and (b) whenever q is an upper
bound on S, z ≤ q.

Axiom 4.3.1 (Least upper bound property). Every nonempty subset of R
that has an upper bound has a least upper bound.

CHAPTER 4. THE REAL NUMBERS 78

More formally, if for some S ⊆ R, S 6= ∅ and there exists some x such
that y ≤ x for all y in S, then there exists z ∈ R such that y ≤ z for all y in
S and whenever y ≤ q for all y in S, z ≤ q.

The least upper bound of a set S, if there is one, is called the supremum
of S and written as supS. A consequence of the least upper bound property
is that every nonempty set S that has a lower bound has a greatest lower
bound, or infimum: inf S = − sup {−x | x ∈ S}. Neither the supremum
nor the infimum is defined for empty or unbounded sets.8

It may be that supS or inf S is not actually an element of S. For example,
sup {x ∈ R | x < 1} = 1, but 1 6∈ {x ∈ R | x < 1}.

Having least upper bounds distinguishes the reals from the rationals:
The bounded nonempty set {x ∈ Q|x · x ≤ 2} has no least upper bound in
Q (because

√
2 is not rational), but it does in R. (This is another example

of a set that doesn’t include its least upper bound.)
A consequence of having least upper bounds is that reals do not get too

big or too small:

Theorem 4.3.2 (Archimedean property). For any two real numbers 0 <
x < y, there exists some n ∈ N such that n · x > y.

Proof. The proof is by contradiction.
Suppose that this is not true, that is, that there exist 0 < x < y such

that n · x ≤ y for all n ∈ N. Dividing both sides by x gives n ≤ x/y for all
n ∈ N, meaning that x/y is an upper bound on N. From the least upper
bound property, there exists a least upper bound z on N.

Now consider z − 1. This is less than z, so it’s not an upper bound on
N. If we negate the statement ∀n ∈ N, n ≤ z − 1, we get ∃n ∈ N, n > z − 1.
But then n+ 1 > z, contradicting the claim that z is an upper bound.

This excludes the possibility of infinitesimals, nonzero values that are
nonetheless smaller than every positive rational number. You can blame
Bishop Berkeley [Ber34] for the absence of these otherwise very useful objects
from our standard mathematical armory. However, in return for losing
infinitesimals we do get that the rationals are dense in the reals, meaning
that between any two reals is a rational, as well as many other useful
properties.

8It’s sometimes convenient to extend R by adding two extra elements −∞ and +∞,
where −∞ is smaller than all reals and +∞ is bigger. In the resulting extended real line,
we can define inf S = −∞ when S has no lower bound, supS = +∞ when S has no upper
bound, and inf ∅ = +∞ and sup ∅ = −∞. These last two conventions are chosen because
they preserve the rules inf(S ∪ T) = min(inf S, inf T) and sup(S ∪ T) = max(supS, supT).

CHAPTER 4. THE REAL NUMBERS 79

4.4 What’s missing: algebraic closure
One way to think about the development of number systems is that each
system N, Z, Q, R, and C adds the ability to solve equations that have no
solutions in the previous system. Some specific examples are

x+ 1 = 0 Solvable in Z but not N
2x = 1 Solvable in Q but not Z

x · x = 2 Solvable in R but not Q
x · x+ 1 = 0 Solvable in C but not R

This process stops with the complex numbers C, which consist of pairs of
the form a+ bi where i2 = −1. The reason is that the complex numbers are
algebraically closed: if you write an equation using only complex numbers,
+, and ·, the it has at least one solution in C. What we give up in moving
from R to C is that we lose order: there is no ordering of complex numbers
that satisfies the translation and scaling invariance axioms. As in many other
areas of mathematics and computer science, we are forced to make trade-offs
based on what is important to us at the time.

4.5 Arithmetic
In principle, it is possible to show that the standard grade-school algorithms
for arithmetic all work in R as defined by the axioms in the preceding sections.
This is sometimes trickier than it looks: for example, just showing that 1 is
positive requires a sneaky application of Axiom 4.2.5.9

To avoid going nuts, we will adopt the following rule:

Rule 4.5.1. Any grade-school fact about arithmetic that does not involve
any variables will be assumed to be true in R.

So for example, you don’t need to write out a proof using the definition of
multiplicative inverses and the distributive law to conclude that 1

2 + 3
5 = 11

10 ;
just remembering how to add fractions (or getting a smart enough computer
to do it for you) is enough.

Caveat: Dumb computers will insist on returning useless decimals like
1.1. As mathematicians, we don’t like decimal notation, because it can’t
represent exactly even trivial values like 1

3 . Similarly, mixed fractions like
1 1

10 , while useful for carpenters, are not popular in mathematics.
9Suppose 1 ≤ 0. Then 1 · 1 ≥ 0 · 1 (Theorem 4.2.13, which simplifies to 1 ≥ 0. Since

1 6= 0, this contradicts our assumption, showing that 1 > 0.

CHAPTER 4. THE REAL NUMBERS 80

4.6 Connection between the reals and other stan-
dard algebras

The reals are an example of an algebra, which is a set with various operations
attached to it: the set is R itself with the operations being 0, 1, +, and ·. A
sub-algebra is a subset that is closed under the operations, meaning that
the results of any operation applied to elements of the subsets (no elements
in the case of 0 or 1) yields an element of the subset.

All sub-algebras of R inherit any properties that don’t depend on the
existence of particular elements other than 0 and 1; so addition and multipli-
cation are still commutative and associative, multiplication still distributes
over addition, and 0 and 1 are still identities. But other axioms may fail.

Some interesting sub-algebras of R are:
• The natural numbers N. This is the smallest sub-algebra of R,
because once you have 0, 1, and addition, you can construct the rest
of the naturals as 1 + 1, 1 + 1 + 1, etc.10 They do not have additive or
multiplicative inverses, but they do satisfy the order axioms, as well as
the extra axiom that 0 ≤ x for all x ∈ N.

• The integers Z. These are what you get if you throw in additive
inverses: now in addition to 0, 1, 1 + 1, etc., you also get −1, −(1 + 1),
etc.11 The order axioms are still satisfied. No multiplicative inverses,
though.

• The dyadics D. These are numbers of the form m2−n where m ∈ Z
and n ∈ N. These are of some importance in computing because almost
all numbers represented inside a computer are really dyadics, although
in mathematics they are not used much. Like the integers, they still
don’t have multiplicative inverses: there is no way to write 1/3 (for
example) as m2−n.

• The rationals Q. Now we ask for multiplicative inverses, and get them.
Any rational can be written as p/q where p and q are integers. Unless

10Formally, we can define N as the smallest subset of R that contains 0 and 1, and is
closed under addition. This definition works because given any subsets S and T that has
these properties, so does their intersection. So we can let N be the intersection of all
subsets of R that contain 0 and 1 and are closed under addition.
It happens to be the case that with this definition, the naturals are also closed under

multiplication. Proving this is a bit of a nuisance, since the obvious way to do this requires
an induction argument, which we will get to in Chapter 5.

11Like the integers, these can be defined as the smallest subset of R containing 0 and 1
that is closed under addition and additive inverse.

CHAPTER 4. THE REAL NUMBERS 81

extra restrictions are put on p and q, these representations are not
unique: 22/7 = 44/14 = 66/21 = (−110)/(−35). You probably first
saw these in grade school as fractions, and one way to describe Q is
as the field of fractions of Z.
The rationals satisfy all the field axioms, and are the smallest sub-field
of R. They also satisfy all the ordered field axioms and the Archimedean
property. But they are not complete. Adding completeness gives the
real numbers.

An issue that arises here is that, strictly speaking, the natural numbers
N we defined back in §3.4 are not elements of R as defined in terms of,
say, Dedekind cuts. The former are finite ordinals while the latter are
downward-closed sets of rationals, themselves represented as elements of
N× N. Similarly, the integer elements of Q will be pairs of the form (n, 1)
where n ∈ N rather than elements of N itself. We also have a definition (§I.1)
that builds natural numbers out of 0 and a successor operation S. So what
does it mean to say N ⊆ Q ⊆ R?

One way to think about it is that the sets

{∅, {∅} , {∅, {∅}} , {∅, {∅} , {∅, {∅}}} . . .} ,
{(0, 1), (1, 1), (2, 1), (3, 1), . . .} ,
{{(p, q) | p < 0} , {(p, q) | p < q} , {(p, q) | p < 2q} , {(p, q) | p < 3q} , . . .} ,

and

{0, S0, SS0, SSS0, . . .}

are all isomorphic: there are bijections between them that preserve the
behavior of 0, 1, +, and ·. So we think of N as representing some Platonic
ideal of natural-numberness that is only defined up to isomorphism.12 So in
the context of R, when we write N, we mean the version of N that is a subset
of R, and in other contexts, we might mean a different set that happens to
behave in exactly the same way.

In the other direction, the complex numbers are a super-algebra of the
reals: we can think of any real number x as the complex number x + 0i,
and this complex number will behave exactly the same as the original real
number x when interacting with other real numbers carried over into C in
the same way.

The various features of these algebras are summarized in Table 4.1.
12In programming terms, N is an interface that may have multiple equivalent implemen-

tations.

CHAPTER 4. THE REAL NUMBERS 82

Symbol N Z Q R C
Name Naturals Integers Rationals Reals Complex numbers
Typical element 12 −12 −12

7
√

12
√

12 + 22
7 i

Associative Yes Yes Yes Yes Yes
0 and 1 Yes Yes Yes Yes Yes
Inverses No + only Yes Yes Yes
Ordered Yes Yes Yes Yes No
Least upper bounds Yes Yes No Yes No
Algebraically closed No No No No Yes

Table 4.1: Features of various standard algebras

4.7 Extracting information from reals
The floor function bxc and ceiling function dxe can be used to convert an
arbitrary real to an integer: the floor of x is the largest integer less than
or equal to x, while the ceiling of x is the smallest integer greater than or
equal to x. More formally, they are defined by bxc = sup {y ∈ Z | y ≤ x} and
dxe = inf {y ∈ Z | y ≥ x}. The floor and ceiling will always be integers, with
x−1 < bxc ≤ x ≤ dxe < x+1. If x is already an integer, bxc = x = dxe. Some
examples: bπc = 3, dπe = 4, b−1/2c = −1, d−1/2e = 0, b12c = d12e = 12.

If you want the fractional part of a real number x, you can compute it
as x− bxc.

The absolute value |x| of x is defined by

|x| =
{
−x if x < 0,
x if x ≥ 0.

The absolute value function erases the sign of x: |−12| = |12| = 12.
The signum function sgn(x) returns the sign of its argument, encoded

as −1 for negative, 0 for zero, and +1 for positive:

sgn(x) =

−1 if x < 0,
0 if x = 0,
+1 if x > 0.

So sgn(−12) = −1, sgn(0) = 0, and sgn(12) = 1. This allows for an
alternative definition of |x| as sgn(x) · x.

Chapter 5

Induction and recursion

Induction is a technique for proving universal statements about some class
of objects built from smaller objects: the idea is to show that if each object
has a property provided all the smaller objects do, then every object in
the class has the property. Recursion is the same technique applied to
definitions instead of proofs: an object is defined in terms of smaller objects
of the same type.

5.1 Simple induction
The simplest form of induction goes by the name of simple induction, and
it’s what we use to show that something is true for all natural numbers.

We have several equivalent definitions of the natural numbers N, but
what they have in common is the following basic pattern, which goes back
to Peano [Pea89]:

• 0 is a natural number.

• If x is a natural number, so is x+ 1.

This is an example of a recursive definition: it gives us a base object
to start with (0) and defines new natural numbers (x+ 1) by applying some
operation (+1) to natural numbers we already have x.

Because these are the only ways to generate natural numbers, we can
prove that a particular natural number has some property P by showing
that you can’t construct a natural number without having P be true. This
means showing that P (0) is true, and that P (x) implies P (x+ 1). If both of
these statements hold, then P is baked into each natural number as part of
its construction.

83

CHAPTER 5. INDUCTION AND RECURSION 84

We can express this formally as the induction schema:

(P (0) ∧ ∀x ∈ N : (P (x)→ P (x+ 1)))→ ∀x ∈ N : P (x). (5.1.1)

Any proof that uses the induction schema will consist of two parts, the
base case showing that P (0) holds, and the induction step showing that
P (x)→ P (x+ 1). The assumption P (x) used in the induction step is called
the induction hypothesis.

For example, let’s suppose we want to show that for all n ∈ N, either
n = 0 or there exists n′ such that n = n′ + 1. Proof: We are trying to show
that P (n) holds for all n, where P (n) says x = 0 ∨ (∃x′ : x = x′ + 1). The
base case is when n = 0, and here the induction hypothesis holds by the
addition rule. For the induction step, we are given that P (x) holds, and
want to show that P (x + 1) holds. In this case, we can do this easily by
observing that P (x+ 1) expands to (x+ 1) = 0 ∨ (∃x′ : x+ 1 = x′ + 1). So
let x′ = x and we are done.1

Here’s a less trivial example. So far we have not defined exponentiation
for natural numbers. Let’s solve this by declaring

x0 = 1 (5.1.2)
xn+1 = x · xn (5.1.3)

where n ranges over all elements of N.
This is a recursive definition: to compute, say, 24, we expand it out

using (5.1.3) until we bottom out at (5.1.2). This gives 24 = 2 ·23 = 2 ·2 ·22 =
2 · 2 · 2 · 20 = 2 · 2 · 2 · 2 · 1 = 16.

If we want to prove something about our newly-defined operation, we are
likely to end up using induction.

Theorem 5.1.1. If a > 1, then an > 1 for all n > 0

Proof. Let a > 1.
Since we are looking at a universal statement about almost all naturals,

we’re going to prove it by induction. This requires choosing an induction
hypothesis. We can rewrite the claim slightly as for all n, n > 0 implies
an > 1.

Base case: If n = 0, then n 6> 0, so the induction hypothesis holds
vacuously.

1This is admittedly not a very interesting use of induction, since we don’t actually use
P (x) in proving P (x+ 1).

CHAPTER 5. INDUCTION AND RECURSION 85

Induction step: Suppose the induction hypothesis holds for n, i.e., that
n > 0→ an > 1. We want to show that it also holds for n+ 1. Annoyingly,
there are two cases we have to consider:

1. n = 0. Then we can compute a1 = a · a0 = a · 1 = a > 1.

2. n > 0. The induction hypothesis now gives an > 1 (since in this case
the premise n > 0 holds), so an+1 = a · an > a · 1 > 1.

5.2 Alternative base cases
One of the things that is apparent from the proof of Theorem 5.1.1 is that
being forced to start at 0 may require painful circumlocutions if 0 is not the
first natural for which we the predicate we care about holds. So in practice
it is common to use a different base case. This gives a generalized version of
the induction schema that works for any integer base:

(P (z0) ∧ ∀z ∈ Z, z ≥ z0 : (P (z)→ P (z + 1)))→ ∀z ∈ Z, z ≥ z0 : P (z)
(5.2.1)

Intuitively, this works for the same reason (5.1.1) works: if P is true for
z0, then any larger integer can be reached by applying +1 enough times,
and each +1 operation preserves P . If we want to prove it formally, observe
that (5.2.1) turns into (5.1.1) if we do a change of variables and define
Q(n) = P (z − z0).

Here’s an example of starting at a non-zero base case:
Theorem 5.2.1. Let n ∈ N. If n ≥ 4, then 2n ≥ n2.
Proof. Base case: Let n = 4, then 2n = 16 = n2.

For the induction step, assume 2n ≥ n2. We need to show that 2n+1 ≥
(n+ 1)2 = n2 + 2n+ 1. Using the assumption and the fact that n ≥ 4, we
can compute

2n+1 = 2 · 2n

≥ 2n2

= n2 + n2

≥ n2 + 4n
= n2 + 2n+ 2n
≥ n2 + 2n+ 1
= (n+ 1)2.

CHAPTER 5. INDUCTION AND RECURSION 86

5.3 Recursive definitions work
In §5.1, we defined xn recursively, by giving rules for computing x0 and
computing xn+1 given xn. We can show using induction that such definitions
actually work.

Lemma 5.3.1. Let S be some codomain, let g : S → S, and let f(n) : N→ S
satisfy

f(0) = x0

f(n+ 1) = g(f(n))

Then there is a unique function f with this property.

Proof. Suppose that there is some f ′ such that f ′(0) = x0 and f ′(n+ 1) =
g(f ′(n)). We will show by induction on n that f ′(n) = f(n) for all n. The
base case is f ′(0) = x0 = f(0). For the induction step, if f ′(n) = f(n), then
f ′(n+ 1) = g(f ′(n)) = g(f(n)) = f(n+ 1).

5.4 Other ways to think about induction
In set-theoretic terms, the principle of induction says that if S is a subset of
N, and both

1. 0 ∈ S and

2. x ∈ S implies x+ 1 ∈ S,

then S = N.
This is logically equivalent to the fact that the naturals are well-ordered.

This means that any non-empty subset S of N has a smallest element. More
formally: for any S ⊆ N, if S 6= ∅, then there exists x ∈ S such that for all
y ∈ S, x ≤ y.

It’s easy to see that well-ordering implies induction. Let S be a subset of
N, and consider its complement N \ S. Then either N \ S is empty, meaning
S = N, or N \ S has a least element y. But in the second case either y = 0
and 0 6∈ S or y = x + 1 for some x and x ∈ S but x + 1 6∈ S. So S 6= N
implies 0 6∈ S or there exists x such that x ∈ S but x+ 1 6∈ S. Taking the
contraposition of this statement gives induction.

CHAPTER 5. INDUCTION AND RECURSION 87

The converse is a little trickier, since we need to figure out how to use
induction to prove things about subsets of N, but induction only talks about
elements of N. The trick is consider only the part of S that is smaller than
some variable n, and show that any S that contains an element smaller than
n has a smallest element.

Lemma 5.4.1. For all n ∈ N, if S is a subset of N that contains an element
less than or equal to n, then S has a smallest element.

Proof. By induction on n.
The base case is n = 0. Here 0 ∈ S and 0 ≤ x for any x ∈ N, so in

particular 0 ≤ x for any x ∈ S, making 0 the smallest element in S.
For the induction step, suppose that the claim in the lemma holds for n.

To show that it holds for n+ 1, suppose that n+ 1 ∈ S. Then either (a) S
contains an element less than or equal to n, so S has a smallest element by
the induction hypothesis, or (b) S does not contain an element less than or
equal to n. But in this second case, S must contain n+ 1, and since there
are no elements less than n+ 1 in S, n+ 1 is the smallest element.

To show the full result, let n be some element of S. Then S contains an
element less than or equal to n, and so S contains a smallest element.

5.5 Strong induction
Sometimes when proving that the induction hypothesis holds for n+ 1, it
helps to use the fact that it holds for all n′ < n+ 1, not just for n. This sort
of argument is called strong induction. Formally, it’s equivalent to simple
induction: the only difference is that instead of proving ∀k : P (k)→ P (k+1),
we prove ∀k : (∀m ≤ k : Q(m)) → Q(k + 1). But this is exactly the same
thing if we let P (k) ≡ ∀m ≤ k : Q(m), since if ∀m ≤ k : Q(m) implies
Q(k + 1), it also implies ∀m ≤ k + 1 : Q(m), giving us the original induction
formula ∀kP (k)→ P (k + 1).

As with simple induction, it can be helpful to think of this approach
backwards, by taking the contraposition. This gives the method of infinite
descent, due to Fermat. The idea is to give a method for taking some n0
for which P (n0) doesn’t hold, and use it to show that there is some n1 < n0
for which P (n1) also doesn’t hold. Repeating this process forever gives an
infinite descending sequence n0 > n1 > n2 > . . . , which would give a subset
of N with no smallest element. As with any recursive definition, the “repeat”
step is secretly using an induction argument.

CHAPTER 5. INDUCTION AND RECURSION 88

An alternative formulation of the method of infinite descent is that since
the naturals are well-ordered, if there is some n for which P (n) doesn’t hold,
there is a smallest n for which it doesn’t hold. But if we can take this n can
find a smaller n′, then we get a contradiction.

Historical note: Fermat may have used this technique to construct a
plausible but invalid proof of his famous “Last Theorem” that an + bn = cn

has no non-trivial integer solutions for n > 2.

5.5.1 Examples

• Every n > 1 can be factored into a product of one or more prime
numbers.2 Proof: By induction on n. The base case is n = 2, which
factors as 2 = 2 (one prime factor). For n > 2, either (a) n is prime
itself, in which case n = n is a prime factorization; or (b) n is not
prime, in which case n = ab for some a and b, both greater than 1.
Since a and b are both less than n, by the induction hypothesis we
have a = p1p2 . . . pk for some sequence of one or more primes and
similarly b = p′1p

′
2 . . . p

′
k′ . Then n = p1p2 . . . pkp

′
1p
′
2 . . . p

′
k′ is a prime

factorization of n.

• Every deterministic bounded two-player perfect-information game that
can’t end in a draw has a winning strategy for one of the players. A
perfect-information game is one in which both players know the entire
state of the game at each decision point (like Chess or Go, but unlike
Poker or Bridge); it is deterministic if there is no randomness that affects
the outcome (this excludes Backgammon and Monopoly, some variants
of Poker, and multiple hands of Bridge), and it’s bounded if the game
is guaranteed to end in at most a fixed number of moves starting from
any reachable position (this also excludes Backgammon and Monopoly).
Proof: For each position x, let b(x) be the bound on the number of
moves made starting from x. Then if y is some position reached from x
in one move, we have b(y) < b(x) (because we just used up a move). Let
f(x) = 1 if the first player wins starting from position x and f(x) = 0
otherwise. We claim that f is well-defined. Proof: If b(x) = 0, the
game is over, and so f(x) is either 0 or 1, depending on who just won. If
b(x) > 0, then f(x) = max {f(y) | y is a successor to x} if it’s the first
player’s turn to move and f(x) = min {f(y) | y is a successor to x} if
it’s the second player’s turn to move. In either case each f(y) is well-
defined (by the induction hypothesis) and so f(x) is also well-defined.

2A number is prime if it can’t be written as a · b where a and b are both greater than 1.

CHAPTER 5. INDUCTION AND RECURSION 89

• The division algorithm: For each n,m ∈ N with m 6= 0, there is a
unique pair q, r ∈ N such that n = qm+ r and 0 ≤ r < m. Proof: Fix
m then proceed by induction on n. If n < m, then if q > 0 we have
n = qm+r ≥ 1·m ≥ m, a contradiction. So in this case q = 0 is the only
solution, and since n = qm+ r = r we have a unique choice of r = n.
If n ≥ m, by the induction hypothesis there is a unique q′ and r′ such
that n−m = q′m+r′ where 0 ≤ r′ < m. But then q = q′+1 and r = r′

satisfies qm+r = (q′−1+1)m+r = (q′m+r′)+m = (n−m)+m = n.
To show that this solution is unique, if there is some other q′′ and r′′
such that q′′m+ r′′ = n, then (q′′ − 1)m+ r′′ = n−m = q′m+ r′, and
by the uniqueness of q′ and r′ (induction hypothesis again), we have
q′′ − 1 = q′ = q − 1 and r′′ = r′ = r, giving that q′′ = q and r′′ = r. So
q and r are unique.

5.6 Recursively-defined structures
A definition of a class of structures can often look like inductive proof, where
we give a base case and a rule for building bigger structures from smaller
ones. Structures defined in this way are recursively-defined.

Examples of recursively-defined structures:

Finite von Neumann ordinals A finite von Neumann ordinal is either
(a) the empty set ∅, or (b) x ∪ {x}, where x is a finite von Neumann
ordinal.

Complete binary trees A complete binary tree consists of either (a) a
leaf node, or (b) an internal node (the root) with two complete binary
trees as children (or subtrees).

Boolean formulas A boolean formula consists of either (a) a variable, (b)
the negation operator applied to a Boolean formula, (c) the AND of
two Boolean formulas, or (d) the OR of two Boolean formulas. A
monotone Boolean formula is defined similarly, except that negations
are forbidden.

Finite sequences, recursive version Before we defined a finite sequence
as a function from some natural number (in its set form: n = {0, 1, 2, ..., n− 1})
to some set S. We could also define a finite sequence over S recursively,
by the rule: 〈〉 (the empty sequence) is a finite sequence, and if a is
a finite sequence and x ∈ S, then (x, a) is a finite sequence. (Fans of
LISP will recognize this method immediately.)

http://en.wikipedia.org/LISP

CHAPTER 5. INDUCTION AND RECURSION 90

The key point is that in each case the definition of an object is recur-
sive—the object itself may appear as part of a larger object. Usually we
assume that this recursion eventually bottoms out: there are some base cases
(e.g. leaves of complete binary trees or variables in Boolean formulas) that
do not lead to further recursion. If a definition doesn’t bottom out in this
way, the class of structures it describes might not be well-defined (i.e., we
can’t tell if some structure is an element of the class or not).

5.6.1 Functions on recursive structures

We can also define functions on recursive structures recursively:

The depth of a binary tree For a leaf, 0. For a tree consisting of a root
with two subtrees, 1 + max(d1, d2), where d1 and d2 are the depths of
the two subtrees.

The value of a Boolean formula given a particular variable assignment
For a variable, the value (true or false) assigned to that variable. For a
negation, the negation of the value of its argument. For an AND or
OR, the AND or OR of the values of its arguments. (This definition is
not quite as trivial as it looks, but it’s still pretty trivial.)

Or we can define ordinary functions recursively:

The Fibonacci series Let F (0) = F (1) = 1. For n > 1, let F (n) =
F (n− 1) + F (n− 2).

Factorial Let 0! = 1. For n > 0, let n! = n · ((n− 1)!).

5.6.2 Recursive definitions and induction

Recursive definitions have the same form as an induction proof. There are
one or more base cases, and one or more recursion steps that correspond to
the induction step in an induction proof. The connection is not surprising if
you think of a definition of some class of objects as a predicate that identifies
members of the class: a recursive definition is just a formula for writing
induction proofs that say that certain objects are members.

Recursively-defined objects and functions also lend themselves easily to
induction proofs about their properties; on general structures, such induction
arguments go by the name of structural induction.

CHAPTER 5. INDUCTION AND RECURSION 91

5.6.3 Structural induction

For finite structures, we can do induction over the structure. Formally we
can think of this as doing induction on the size of the structure or part of
the structure we are looking at.

Examples:

Every complete binary tree with n leaves has n− 1 internal nodes
Base case is a tree consisting of just a leaf; here n = 1 and there are
n−1 = 0 internal nodes. The induction step considers a tree consisting
of a root and two subtrees. Let n1 and n2 be the number of leaves in
the two subtrees; we have n1 + n2 = n; and the number of internal
nodes, counting the nodes in the two subtrees plus one more for the
root, is (n1 − 1) + (n2 − 1) + 1 = n1 + n2 − 1 = n− 1.

Monotone Boolean formulas generate monotone functions What this
means is that changing a variable from false to true can never change
the value of the formula from true to false. Proof is by induction on
the structure of the formula: for a naked variable, it’s immediate. For
an AND or OR, observe that changing a variable from false to true
can only leave the values of the arguments unchanged, or change one
or both from false to true (induction hypothesis); the rest follows by
staring carefully at the truth table for AND or OR.

Bounding the size of a binary tree with depth d We’ll show that it
has at most 2d+1 − 1 nodes. Base case: the tree consists of one leaf,
d = 0, and there are 20+1 − 1 = 2 − 1 = 1 nodes. Induction step:
Given a tree of depth d > 1, it consists of a root (1 node), plus two
subtrees of depth at most d− 1. The two subtrees each have at most
2d−1+1 − 1 = 2d − 1 nodes (induction hypothesis), so the total number
of nodes is at most 2(2d − 1) + 1 = 2d+1 + 2− 1 = 2d+1 − 1.

Chapter 6

Summation notation

6.1 Summations
Given a sequence xa, xa+1, . . . , xb, its sum xa + xa+1 + · · ·+ xb is written as
the summation

∑b
i=a xi.

The large jagged symbol is a stretched-out version of a capital Greek
letter sigma. The variable i is called the index of summation, a is the
lower bound or lower limit, and b is the upper bound or upper limit.
Mathematicians invented this notation centuries ago because they didn’t
have for loops; the intent is that you loop through all values of i from a to
b (including both endpoints), summing up the body of the summation for
each i.

If b < a, then the sum is zero. For example,

−5∑
i=0

2i sin i
i3

= 0.

This rule mostly shows up as an extreme case of a more general formula,
e.g.

n∑
i=1

i = n(n+ 1)
2 ,

which still works even when n = 0 or n = −1 (but not for n ≤ −2).
Summation notation is used both for laziness (it’s more compact to write∑n

i=0(2i+ 1) than 1 + 3 + 5 + 7 + · · ·+ (2n+ 1)) and precision (it’s also more
clear exactly what you mean).

92

CHAPTER 6. SUMMATION NOTATION 93

6.1.1 Formal definition

Formally, we define a summation by the recurrence
b∑
i=a

f(i) =
{

0 if b < a

f(a) +
∑b
i=a+1 f(i) otherwise.

(6.1.1)

In English, we can compute a summation recursively by adding the first
value to the sum of the remaining values.

A typical application of this definition might look like this:
3∑
i=1

i = 1 +
3∑
i=2

i

= 1 + 2 +
3∑
i=3

i

= 1 + 2 + 3 +
3∑
i=4

i

= 1 + 2 + 3 + 0
= 6.

In principle, we can also use the definition even if the bounds are not
integers:

9/4∑
i=1/2

i = 1/2 +
9/4∑
i=3/2

i

= 1/2 + 3/2 +
9/4∑
i=5/2

i

= 1/2 + 3/2 + 0
= 2,

but this is uncommon and confusing. The times when it might come up are
when our lower bound is an integer but the upper bound might not be, as in∑

i=1
n/2i.

In cases like this, many writers will often put in an explicit floor or ceiling
(see §3.5.1) to make it explicit where the summation is supposed to stop:∑

i=1
bn/2ci.

CHAPTER 6. SUMMATION NOTATION 94

In the case where b−a is an integer, we can also compute sums by pulling
elements off the top. This is sometimes more convenient, and is justified by
the following lemma:

Lemma 6.1.1. If b− a is an integer, then

b∑
i=a

f(i) =
{

0 if b < a

f(b) +
∑b−1
i=a otherwise.

Proof. For b < a, (6.1.1) correctly returns 0. We will prove the remaining
cases b ≥ a by induction on b− a.

If b − a = 0, then applying (6.1.1) gives
∑b
i=a f(i) = f(a) = f(b) =

f(b) +
∑b−1
i=a . This is our base case.

If b− a > 0, then we can compute

b∑
i=a

f(i) = f(a) +
b∑

i=a+1
f(i)

= f(a) + f(b) +
b−1∑
i=a+1

f(i)

= f(b) +
b−i∑
i=a

(i),

where the first and last steps use the definition (6.1.1) and the middle step
uses the induction hypothesis, which holds because the gap between the
bounds a+ 1 and b is b− (a+ 1) = b− a− 1 < b− a.

Although Lemma 6.1.1 holds whenever the difference between the bounds
is an integer, in practice we will mostly use it when both bounds are integers.

6.1.2 Scope

The scope of a summation extends to the first addition or subtraction symbol
that is not enclosed in parentheses or part of some larger term (e.g., in the
numerator of a fraction). So

n∑
i=1

i2 + 1 =
(

n∑
i=1

i2
)

+ 1 = 1 +
n∑
i=1

i2 6=
n∑
i=1

(i2 + 1).

Since this can be confusing, it is generally safest to wrap the sum in
parentheses (as in the second form) or move any trailing terms to the

CHAPTER 6. SUMMATION NOTATION 95

beginning. An exception is when adding together two sums, as in

n∑
i=1

i2 +
n2∑
i=1

i =
(

n∑
i=1

i2
)

+

 n2∑
i=1

i

 .
Here the looming bulk of the second sigma warns the reader that the

first sum is ending; it is much harder to miss than the relatively tiny plus
symbol in the first example.

6.1.3 Summation identities

The summation operator is linear. This means that constant factors can be
pulled out of sums:

m∑
i=n

axi = a
∑
i=n

xi (6.1.2)

and sums inside sums can be split:
m∑
i=n

(xi + yi) =
m∑
i=n

xi +
∑
i∈S

yi. (6.1.3)

With multiple sums, the order of summation is not important, provided
the bounds on the inner sum don’t depend on the index of the outer sum:

m∑
i=n

m′∑
j=n′

xij =
m′∑
j=n′

m∑
i=n

xij .

Products of sums can be turned into double sums of products and vice
versa: (

m∑
i=n

xi

) m′∑
j=n′

yj

 =
m∑
i=n

m′∑
j=n′

xiyj .

These identities can often be used to transform a sum you can’t solve
into something simpler.

To prove these identities, use induction and (6.1.1). For example, the
following lemma demonstrates a generalization of (6.1.2) and (6.1.3):

Lemma 6.1.2.
m∑
i=n

(axi + byi) = a
m∑
i=n

xi + b
m∑
i=n

yi.

CHAPTER 6. SUMMATION NOTATION 96

Proof. If m < n, then both sides of the equation are zero. This proves
that (6.1.2) holds for small m and gives us a base case for our induction at
m = n− 1.

For the induction step, we want to show that (6.1.2) holds for m+ 1 if it
holds for m. This is a straightforward computation using (6.1.1) twice, first
to unpack the combined sum then to repack the split sums:

m+1∑
i=n

(axi + byi) =
m∑
i=n

(axi + byi) + (axm + bym)

= a
m∑
i=n

xi + b
m∑
i=n

yi + axm + bym

= a

(
m∑
i=n

xi + xm

)
+ b

(
m∑
i=n

yi + ym

)

= a
m+1∑
i=n

+b
m+1∑
i=n

yi.

6.1.4 Choosing and replacing index variables

When writing a summation, you can generally pick any index variable you
like, although i, j, k, etc., are popular choices. Usually it’s a good idea to
pick an index that isn’t used outside the sum. Though

n∑
n=0

n =
n∑
i=0

i

has a well-defined meaning, the version on the right-hand side is a lot
less confusing.

In addition to renaming indices, you can also shift them, provided you
shift the bounds to match. For example, rewriting

n∑
i=1

(i− 1)

by substituting j for i− 1 gives
n−1∑
j=0

j,

which is easier to work with.

CHAPTER 6. SUMMATION NOTATION 97

6.1.5 Sums over given index sets

Sometimes we’d like to sum an expression over values that aren’t consecutive
integers, or may not even be integers at all. This can be done using a sum
over all indices that are members of a given index set, or in the most general
form satisfy some given predicate (with the usual set-theoretic caveat that
the objects that satisfy the predicate must form a set). Such a sum is written
by replacing the lower and upper limits with a single subscript that gives
the predicate that the indices must obey.

For example, we could sum i2 for i in the set {3, 5, 7}:∑
i∈{3,5,7}

i2 = 32 + 52 + 72 = 83.

Or we could sum the sizes of all subsets of a given set S:∑
A⊆S
|A|.

Or we could sum the inverses of all prime numbers less than 1000:∑
p < 1000, p is prime

1/p.

Sometimes when writing a sum in this form it can be confusing exactly
which variables are the indices. The usual convention is that a variable is
always an index if it doesn’t have any meaning outside the sum, and the
index variable is put first in the expression under the sigma if possible. If it
is not obvious what a complicated sum means, it is generally best to try to
rewrite it to make it more clear. Still, you may see sums that look like∑

1≤i<j≤n

i

j

or ∑
x∈A⊆S

|A|

where the first sum sums over all pairs of values (i, j) such that 1 ≤ i,
i ≤ j, and j ≤ n, with each pair appearing exactly once; and the second
sums over all sets A that are subsets of S and contain x (assuming x and
S are defined outside the summation). Hopefully, you will not run into too
many sums that look like this, but it’s worth being able to decode them if
you do.

CHAPTER 6. SUMMATION NOTATION 98

Sums over a given set are guaranteed to be well-defined only if the set is
finite. In this case we can use the fact that there is a bijection between any
finite set S and the ordinal |S| to rewrite the sum as a sum over indices in |S|.
For example, if |S| = n, then there exists a bijection f : {0 . . . n− 1} ↔ S,
so we can define ∑

i∈S
xi =

n−1∑
i=0

xf(i). (6.1.4)

This allows us to apply (6.1.1) to decompose the sum further:

∑
i∈S

xi =

0 if S = ∅,(∑
i∈S\z xi

)
+ xz if z ∈ S.

(6.1.5)

The idea is that for any particular z ∈ S, we can always choose a bijection
that makes z = f (|S| − 1).

If S is infinite, computing the sum is trickier. For countable S, where
there is a bijection f : N↔ S, we can sometimes rewrite

∑
i∈S

xi =
∞∑
i=0

xf(i).

and use the definition of an infinite sum (given below). Note that if the
xi have different signs the result we get may depend on which bijection we
choose. For this reason such infinite sums are probably best avoided unless
you can explicitly use N or a subset of N as the index set.

6.1.6 Sums without explicit bounds

When the index set is understood from context, it is often dropped, leaving
only the index, as in

∑
i i

2. This will generally happen only if the index spans
all possible values in some obvious range, and can be a mark of sloppiness
in formal mathematical writing. Theoretical physicists adopt a still more
lazy approach, and leave out the

∑
i part entirely in certain special types

of sums: this is known as the Einstein summation convention after the
notoriously lazy physicist who proposed it.

6.1.7 Infinite sums

Sometimes you may see an expression where the upper limit is infinite, as in
∞∑
i=0

1
i2
.

CHAPTER 6. SUMMATION NOTATION 99

The meaning of this expression is the limit of the series s obtained by
taking the sum of the first term, the sum of the first two terms, the sum
of the first three terms, etc. The limit converges to a particular value x if
for any ε > 0, there exists an N such that for all n > N , the value of sn is
within ε of x (formally, |sn − x| < ε). We will see some examples of infinite
sums when we look at generating functions in §11.3.

6.1.8 Double sums

Nothing says that the expression inside a summation can’t be another
summation. This gives double sums, such as in this rather painful definition
of multiplication for non-negative integers:

a× b def=
a∑
i=1

b∑
j=1

1.

If you think of a sum as a for loop, a double sum is two nested for loops.
The effect is to sum the innermost expression over all pairs of values of the
two indices.

Here’s a more complicated double sum where the limits on the inner sum
depend on the index of the outer sum:

n∑
i=0

i∑
j=0

(i+ 1)(j + 1).

When n = 1, this will compute (0+1)(0+1)+(1+1)(0+1)+(1+1)(1+1) =
7. For larger n the number of terms grows quickly.

6.2 Products
What if you want to multiply a series of values instead of add them? The
notation is the same as for a sum, except that you replace the sigma with a
pi, as in this definition of the factorial function for non-negative n:

n! def=
n∏
i=1

i = 1 · 2 · · · · · n.

The other difference is that while an empty sum is defined to have the
value 0, an empty product is defined to have the value 1. The reason for
this rule (in both cases) is that an empty sum or product should return the

CHAPTER 6. SUMMATION NOTATION 100

identity element for the corresponding operation—the value that when
added to or multiplied by some other value x doesn’t change x. This allows
writing general rules like:∑

i∈A
f(i) +

∑
i∈B

f(i) =
∑

i∈A∪B
f(i)(∏

i∈A
f(i)

)
·
(∏
i∈B

f(i)
)

=
∏

i∈A∪B
f(i)

which holds as long as A ∩ B = ∅. Without the rule that the sum of an
empty set was 0 and the product 1, we’d have to put in a special case for
when one or both of A and B were empty.

Note that a consequence of this definition is that 0! = 1.

6.3 Other big operators
Some more obscure operators also allow you to compute some aggregate over
a series, with the same rules for indices, lower and upper limits, etc., as

∑
and

∏
. These include:

• Big AND: ∧
x∈S

P (x) ≡ P (x1) ∧ P (x2) ∧ . . . ≡ ∀x ∈ S : P (x).

• Big OR: ∨
x∈S

P (x) ≡ P (x1) ∨ P (x2) ∨ . . . ≡ ∃x ∈ S : P (x).

• Big Intersection:
n⋂
i=1

Ai = A1 ∩A2 ∩ . . . ∩An.

• Big Union:
n⋃
i=1

Ai = A1 ∪A2 ∪ . . . ∪An.

These all behave pretty much the way one would expect. One issue that
is not obvious from the definition is what happens with an empty index set.
Here the rule as with sums and products is to return the identity element
for the operation. This will be True for AND, False for OR, and the empty
set for union; for intersection, there is no identity element in general, so the
intersection over an empty collection of sets is undefined.

CHAPTER 6. SUMMATION NOTATION 101

6.4 Closed forms
When confronted with some nasty sum, it is nice to be able to convert
into a simpler expression that doesn’t contain any summation signs or other
operators that iterate over some bound variable. Such an expression is known
as a closed form.

It is not always possible to do this: the techniques available are mostly
limited to massaging the summation until it turns into something whose
simpler expression you remember.1

To do this, it helps to have both (a) a big toolbox of summations with
known values, and (b) rules for manipulating summations to get them into a
more convenient form. We’ll start with the toolbox.

6.4.1 Some standard sums

Here are the three formulas you should either memorize or remember how to
derive:

n∑
i=1

1 = n

n∑
i=1

i = n(n+ 1)
2

n∑
i=0

ri = 1− rn+1

1− r

Rigorous proofs of these can be obtained by induction on n. The first
one is pretty easy.

A not so rigorous proof of the second identity can be given using a trick
alleged to have been invented by the legendary 18th-century mathematician
Carl Friedrich Gauss, at a frighteningly early age, by adding up two copies
of the sequence running in opposite directions, one term at a time:

S = 1 + 2 + . . . + n
S = n + n− 1 + . . . + 1

2S = (n+ 1) + (n+ 1) + . . . + (n+ 1) = n(n+ 1),

and from 2S = n(n+ 1) we get S = n(n+ 1)/2. One way to remember this
is that the average value in the sequence is n+1

2 , the average of the values at
the ends. We can then multiple by the number of values n to get the total.

1If you have done integrals in calculus (see §H.3, this process will be unpleasantly
familiar.

CHAPTER 6. SUMMATION NOTATION 102

For the last identity, start with
∞∑
i=0

ri = 1
1− r ,

which holds when |r| < 1. The proof is that if

S =
∞∑
i=0

ri

then

rS =
∞∑
i=0

ri+1 =
∞∑
i=1

ri

and so

S − rS = r0 = 1.

Solving for S gives S = 1/(1− r).
We can now get the sum up to n by subtracting off the extra terms

starting with rn+ 1:
n∑
i=0

ri =
∞∑
i=0

ri − rn+1
∞∑
i=0

ri = 1
1− r −

rn+1

1− r = 1− rn+1

1− r .

Though this particular proof only works for |r| < 1, the formula works
for any r not equal to 1.2 If r is equal to 1, then the formula doesn’t work (it
requires dividing zero by zero), but there is an easier way to get the solution.

These standard summations can be combined with linearity to solve more
complicated problems. For example, we can directly compute

n∑
i=0

(3 · 2n + 5) = 3
n∑
i=0

2n + 5
n∑
i=0

1

= 3 ·
(
2n+1 − 1

)
+ 5(n+ 1)

= 3 · 2n+1 + 5n+ 2.

Other useful summations can be found in various places. Rosen [Ros12]
and Graham et al. [GKP94] both provide tables of sums in their chapters on
generating functions. But it is usually better to be able to reconstruct the
solution of a sum rather than trying to memorize such tables.

2Proof: By induction on n. For n = 0, the formula gives 1−rn+1

1−r = 1−r
1−r = 1 =

r0 =
∑n

i=0 r
i. For larger n, compute 1−rn+1

1−r = 1−rn+rn−rn+1

1−r = 1−rn

1−r + rn(1−r)
1−r =∑n−1

i=0 r
i + rn =

∑n

i=0 r
i.

CHAPTER 6. SUMMATION NOTATION 103

6.4.2 Guess but verify

If nothing else works, you can try using the “guess but verify” method, which
also works more generally for identifying sequences defined recursively. Here
we write out the values of the summation for the first few values of the upper
limit (for example), and hope that we recognize the sequence. If we do, we
can then try to prove that a formula for the sequence of sums is correct by
induction.

Example: Suppose we want to compute

S(n) =
n∑
k=1

(2k − 1)

but that it doesn’t occur to us to split it up and use the
∑n
k=1 k and∑n

k=1 1 formulas. Instead, we can write down a table of values:
n S(n)
0 0
1 1
2 1 + 3 = 4
3 1 + 3 + 5 = 9
4 1 + 3 + 5 + 7 = 16
5 1 + 3 + 5 + 7 + 9 = 25

At this point we might guess that S(n) = n2. To verify this, observe that
it holds for n = 0, and for larger n we have S(n) = S(n− 1) + (2n− 1) =
(n− 1)2 + 2n− 1 = n2 − 2n+ 1− 2n− 1 = n2. So we can conclude that our
guess was correct.

6.4.3 Ansatzes

A slightly more sophisticated approach to guess but verify involves guessing
the form of the solution, but leaving a few parameters unfixed so that we can
adjust them to match the actual data. This parameterized guess is called
an ansatz, from the German word for “starting point,” because guesswork
sounds much less half-baked if you can refer to it in German.

To make this work, it helps to have some idea of what the solution to a
sum might look like. One useful rule of thumb is that a sum over a degree-d
polynomial is usually a degree-(d+ 1) polynomial.

For example, let’s guess that
n∑
i=0

i2 = c3n
3 + c2n

2 + c1n+ c0, (6.4.1)

CHAPTER 6. SUMMATION NOTATION 104

when n ≥ 0.
Under the assumption that (6.4.1) holds, we can plug in n = 0 to get∑0

i=0 i
2 = 0 = c0. This means that we only need to figure out c3, c2, and c1.

Plugging in some small values for n gives

0 + 1 = 1 = c3 + c2 + c1

0 + 1 + 4 = 5 = 8c3 + 4c2 + 2c1

0 + 1 + 4 + 9 = 14 = 27c3 + 8c2 + 3c1

With some effort, this system of equations can be solved to obtain
c3 = 1/3, c2 = 1/2, c1 = 1/6, giving the formula

n∑
i=0

i2 = 1
3n

3 + 1
2n

2 + 1
6n. (6.4.2)

This is often written as
n∑
i=0

i2 = (2n+ 1)n(n+ 1)
6 , (6.4.3)

which is the same formula, just factored.
We still don’t know that (6.4.2) actually works, since we only looked at

the first four values in the sequence. To show that it does work, we do an
induction argument.

The base case is n = 0, which we know works. For the induction step,
compute

1
3(n+ 1)3 + 1

2(n+ 1)2 + 1
6(n+ 1) =

(1
3n

3 + n2 + n+ 1
3

)
+
(1

2n
2 + n+ 1

2

)
+
(1

6n+ 1
6

)
= 1

3n
3 + 1

2n
2 + 1

6n+ n2 + 2n+ 1

=
n∑
i=0

i2 + (n+ 1)2

=
n+1∑
i=0

i2.

Chapter 7

Asymptotic notation

Asymptotic notation is a tool for describing the behavior of functions on
large values, which is used extensively in the analysis of algorithms.

7.1 Definitions
O(f(n)) A function g(n) is in O(f(n)) (“big O of f(n)”) if there exist

constants c > 0 and N such that |g(n)| ≤ c|f(n)| for all n > N .

Ω(f(n)) A function g(n) is in Ω(f(n)) (“big Omega of f(n)”) if there exist
constants c > 0 and N such that |g(n)| ≥ c|f(n)| for all n > N .

Θ(f(n)) A function g(n) is in Θ(f(n)) (“big Theta of f(n)”) if there exist
constants c1 > 0, c2 > 0, and N such that c1|f(n)| ≤ |g(n)| ≤ c2|f(n)|
for all n > N . This is equivalent to saying that g(n) is in both O(f(n))
and Ω(f(n)).

o(f(n)) A function g(n) is in o(f(n)) (“little o of f(n)”) if for every c > 0
there exists an N such that |g(n)| ≤ c|f(n)| for all n > N . This is
equivalent to saying that limn→∞ g(n)/f(n) = 0.

ω(f(n)) A function g(n) is in ω(f(n) (“little omega of f(n)”) if for every
c > 0 there exists an N such that |g(n)| ≥ c|f(n)| for all n > N . This
is equivalent to saying that limn→∞|g(n)|/|f(n)| diverges to infinity.

7.2 Motivating the definitions
Why would we use this notation?

105

CHAPTER 7. ASYMPTOTIC NOTATION 106

• Constant factors vary from one machine to another. The c factor hides
this. If we can show that an algorithm runs in O(n2) time, we can be
confident that it will continue to run in O(n2) time no matter how fast
(or how slow) our computers get in the future.

• For the N threshold, there are several excuses:

– Any problem can theoretically be made to run in O(1) time for
any finite subset of the possible inputs (e.g. all inputs expressible
in 50 MB or less), by prefacing the main part of the algorithm with
a very large table lookup. So it’s meaningless to talk about the
relative performance of different algorithms for bounded inputs.

– If f(n) > 0 for all n, then we can get rid of N (or set it to zero) by
making c large enough. But some functions f(n) take on zero—or
undefined—values for interesting n (e.g., f(n) = n2 is zero when
n is zero, and f(n) = logn is undefined for n = 0 and zero for
n = 1). Allowing the minimum N lets us write O(n2) or O(logn)
for classes of functions that we would otherwise have to write
more awkwardly as something like O(n2 + 1) or O(log(n+ 2)).

– Putting the n > N rule in has a natural connection with the
definition of a limit, where the limit as n goes to infinity of g(n)
is defined to be x if for each ε > 0 there is an N such that
|g(n)− x| < ε for all n > N . Among other things, this permits
the limit test that says g(n) = O(f(n)) if the limn→∞

g(n)
f(n) exists

and is finite.

7.3 Proving asymptotic bounds
Most of the time when we use asymptotic notation, we compute bounds using
stock theorems like O(f(n)) +O(g(n)) = O(max(f(n), g(n)) or O(cf(n)) =
O(f(n)). But sometimes we need to unravel the definitions to see whether
a given function fits in a given class, or to prove these utility theorems to
begin with. So let’s do some examples of how this works.

Theorem 7.3.1. The function n is in O(n3).

Proof. We must find c, N such that for all n > N , |n| ≤ c
∣∣n3∣∣. Since n3

is much bigger than n for most values of n, we’ll pick c to be something
convenient to work with, like 1. So now we need to choose N so that for all
n > N , |n| ≤

∣∣n3∣∣. It is not the case that |n| ≤
∣∣n3∣∣ for all n (try plotting

CHAPTER 7. ASYMPTOTIC NOTATION 107

n vs n3 for n < 1) but if we let N = 1, then we have n > 1, and we just
need to massage this into n3 ≥ n. There are a couple of ways to do this,
but the quickest is probably to observe that squaring and multiplying by n
(a positive quantity) are both increasing functions, which means that from
n > 1 we can derive n2 > 12 = 1 and then n2 · n = n3 > 1 · n = n.

Theorem 7.3.2. The function n3 is not in O(n).

Proof. Here we need to negate the definition of O(n), a process that turns
all existential quantifiers into universal quantifiers and vice versa. So what
we need to show is that for all c > 0 and N , there exists some n > N for
which

∣∣n3∣∣ is not less than c|n|. So fix some such c > 0 and N . We must find
an n > N for which n3 > cn. Solving for n in this inequality gives n > c1/2;
so setting n > max(N, c1/2) finishes the proof.

Theorem 7.3.3. If f1(n) is in O(g(n)) and f2(n) is in O(g(n)), then f1(n)+
f2(n) is in O(g(n)).

Proof. Since f1(n) is in O(g(n)), there exist constants c1, N1 such that for
all n > N1, |f1(n)| < c|g(n)|. Similarly there exist c2, N2 such that for all
n > N2, |f2(n)| < c|g(n)|.

To show f1(n) + f2(n) in O(g(n)), we must find constants c and N such
that for all n > N , |f1(n) + f2(n)| < c|g(n)|. Let’s let c = c1 + c2. Then
if n is greater than max(N1, N2), it is greater than both N1 and N2, so we
can add together |f1| < c1|g| and |f2| < c2|g| to get |f1 + f2| ≤ |f1|+ |f2| <
(c1 + c2)|g| = c|g|.

7.4 General principles for dealing with asymptotic
notation

7.4.1 Remember the difference between big-O, big-Ω, and
big-Θ

• Use big-O when you have an upper bound on a function, e.g. the zoo
never got more than O(1) new gorillas per year, so there were at most
O(t) gorillas at the zoo in year t.

• Use big-Ω when you have a lower bound on a function, e.g. every year
the zoo got at least one new gorilla, so there were at least Ω(t) gorillas
at the zoo in year t.

CHAPTER 7. ASYMPTOTIC NOTATION 108

• Use big-Θ when you know the function exactly to within a constant-
factor error, e.g. every year the zoo got exactly five new gorillas, so
there were Θ(t) gorillas at the zoo in year t.

For the others, use little-o and ω when one function becomes vanishingly
small relative to the other, e.g. new gorillas arrived rarely and with declining
frequency, so there were o(t) gorillas at the zoo in year t. These are not used
as much as big-O, big-Ω, and big-Θ in the algorithms literature.

7.4.2 Simplify your asymptotic terms as much as possible

• O(f(n)) + O(g(n)) = O(f(n)) when g(n) = O(f(n)). If you have an
expression of the form O(f(n) + g(n)), you can almost always rewrite
it as O(f(n)) or O(g(n)) depending on which is bigger. The same goes
for Ω and Θ.

• O(cf(n)) = O(f(n)) if c is a constant. You should never have a
constant inside a big O. This includes bases for logarithms: since
loga x = logb x/ logb a, you can always rewrite O(lgn), O(lnn), or
O(log1.4467712 n) as just O(logn).

• But watch out for exponents and products: O(3nn3.1178 log1/3 n) is
already as simple as it can be.

7.4.3 Use limits (may require calculus)

If you are confused whether e.g. logn is O(n), try computing the limit as n
goes to infinity of logn

n , and see if it converges to a constant (zero is OK).
The general rule is that f(n) is O(g(n) if limn→∞

f(n)
g(n) exists.1

You may need to use L’Hôpital’s Rule to evaluate such limits if they
aren’t obvious. This says that

lim
n→∞

f(n)
g(n) = lim

n→∞
f ′(n)
g′(n)

when f(n) and g(n) both diverge to infinity or both converge to zero. Here
f ′ and g′ are the derivatives of f and g with respect to n; see §H.2.

1Note that this is a sufficient but not necessary condition. For example, the function
f(n) that is 1 when n is even and 2 when n is odd is O(1), but limn→∞

f(n)
1 doesn’t exist.

CHAPTER 7. ASYMPTOTIC NOTATION 109

7.5 Asymptotic notation and summations
Algorithms often involve loops, where the cost of the loop is the sum of the
costs of each iteration. When we are looking for an asymptotic cost, we
don’t need to compute an exact value for this sum, but can instead use an
approximation that is accurate up to constant factors. This can make our
life much easier.

Here’s my usual strategy for computing sums in asymptotic form:

7.5.1 Pull out constant factors

Pull as many constant factors out as you can (where constant in this case
means anything that does not involve the summation index). Example:∑n
i=1

n
i = n

∑n
i=1

1
i = nHn = Θ(n logn). (See harmonic series below.)

7.5.2 Bound using a known sum

See if it’s bounded above or below by some other sum whose solution you
already know. Here are some good sums to try (some of these previously
appeared in §6.4).

7.5.2.1 Geometric series

n∑
i=0

xi = 1− xn+1

1− x = xn+1 − 1
x− 1 .

and
∞∑
i=0

xi = 1
1− x.

The way to recognize a geometric series is that the ratio between adjacent
terms is constant. If you memorize the second formula, you can rederive the
first one. If you’re Gauss, you can skip memorizing the second formula.

A useful trick to remember for geometric series is that if x is a constant
that is not exactly 1, the sum is always big-Theta of its largest term. So for
example

∑n
i=1 2i = Θ(2n) (the exact value is 2n+1− 1), and

∑n
i=1 2−i = Θ(1)

(the exact value is 1− 2−n).
If the ratio between terms equals 1, the formula doesn’t work; instead,

we have a constant series (see below).

CHAPTER 7. ASYMPTOTIC NOTATION 110

7.5.2.2 Constant series

n∑
i=1

1 = n.

7.5.2.3 Arithmetic series

The simplest arithmetic series is
n∑
i=1

i = n(n+ 1)
2 .

The way to remember this formula is that it’s just n times the average value
(n+ 1)/2. The way to recognize an arithmetic series is that the difference
between adjacent terms is constant. The general arithmetic series is of the
form

n∑
i=1

(ai+ b) =
n∑
i=1

ai+
n∑
i=1

b

= a · n(n+ 1)
2 + bn.

Because the general series expands so easily to the simple series, it’s usually
not worth memorizing the general formula.

In asymptotic terms, every arithmetic series is Θ(n2).

7.5.2.4 Harmonic series

n∑
i=1

1/i = Hn = Θ(n logn).

Can be rederived using the integral technique given below or by summing
the last half of the series, so this is mostly useful to remember in case you
run across Hn (the “n-th harmonic number”).

The infinite sum
∑∞
i=1 1/i diverges: even though it grows very slowly as i

gets larger, adding enough terms will eventually exceed any constant bound.
The value of the more general infinite sum

∑∞
i=1 1/is is called ζ(s), and

ζ is called the Riemann zeta function. The harmonic series is the case
where s = 1, and because it diverges, s, ζ(1) is undefined. However, ζ(s) is
defined for s > 1. The exact value can be hard to compute,2 but as long as
s does not depend on n, it’s Θ(1) for any fixed s > 1.

2Finding just the value of ζ(2) =
∑∞

i=1 1/i2 = π2/6 was known as the Basel problem

CHAPTER 7. ASYMPTOTIC NOTATION 111

7.5.3 Bound part of the sum

See if there’s some part of the sum that you can bound. For example,
∑n
i=1 i

3

has a (painful) exact solution, or can be approximated by the integral trick
described below, but it can very quickly be solved to within a constant factor
by observing that

∑n
i=1 i

3 ≤
∑n
i=1 n

3 = O(n4) and
∑n
i=1 i

3 ≥
∑n
i=n/2 i

3 ≥∑n
i=n/2(n/2)3 = Ω(n4).

7.5.4 Integrate

Integrate. If f(n) is non-decreasing and you know how to integrate it, then∫ b
a−1 f(x) dx ≤

∑b
i=a f(i) ≤

∫ b+1
a f(x) dx, which is enough to get a big-Theta

bound for almost all functions you are likely to encounter in algorithm
analysis. If you don’t know how to integrate, see §H.3.

7.5.5 Grouping terms

Try grouping terms together. For example, the standard trick for showing
that the harmonic series is unbounded in the limit is to argue that 1 + 1/2 +
1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + . . . ≥ 1 + 1/2 + (1/4 + 1/4) + (1/8 +
1/8 + 1/8 + 1/8) + . . . ≥ 1 + 1/2 + 1/2 + 1/2 + I usually try everything
else first, but sometimes this works if you get stuck.

Warning: Though it’s always safe to reorder terms in a finite sum, bad
things can happen if you reorder an infinite sum that includes both positive
and negative terms.

7.5.6 An odd sum

One oddball sum that shows up occasionally but is hard to solve using
any of the above techniques is

∑n
i=1 a

ii. If a < 1, this is Θ(1) (the exact
formula for

∑∞
i=1 a

ii when a < 1 is a/(1− a)2, which gives a constant upper
bound for the sum stopping at n); if a = 1, it’s just an arithmetic series; if
a > 1, the largest term dominates and the sum is Θ(ann) (there is an exact
formula, but it’s ugly—if you just want to show it’s O(ann), the simplest
approach is to bound the series

∑n−1
i=0 a

n−i(n − i) by the geometric series∑n−1
i=0 a

n−in ≤ ann/(1− a−1) = O(ann). I wouldn’t bother memorizing this
one provided you remember how to find it in these notes.

and took 90 years to solve. When s can be a complex number, showing that ζ(s) = 0 only
if s is a negative even integer or of the form 1/2 + ai is the Riemann hypothesis and
has not yet been proven or disproven since it was first proposed in 1859. You will not be
asked to solve either of these problems in this class.

CHAPTER 7. ASYMPTOTIC NOTATION 112

7.5.7 Final notes

In practice, almost every sum you are likely to encounter in algorithm
analysis will be of the form

∑n
i=1 f(n) where f(n) is exponential (so that

it’s bounded by a geometric series and the largest term dominates) or
polynomial (so that f(n/2) = Θ(f(n))) and the sum is Θ(nf(n)) using the∑n
i=n/2 f(n) = Ω(nf(n)) lower bound).
Graham et al. [GKP94] spend a lot of time on computing sums exactly.

The most generally useful technique for doing this is to use generating
functions (see §11.3).

7.6 Variations in notation
As with many tools in mathematics, you may see some differences in how
asymptotic notation is defined and used.

7.6.1 Absolute values

Some authors leave out the absolute values. For example, Biggs [Big02]
defines f(n) as being in O(g(n)) if f(n) ≤ cg(n) for sufficiently large n. If
f(n) and g(n) are non-negative, this is not an unreasonable definition. But it
produces odd results if either can be negative: for example, by this definition,
−n1000 is in O(n2). Some authors define O, Ω, and Θ only for non-negative
functions, avoiding this problem.

The most common definition (which we will use) says that f(n) is in
O(g(n)) if |f(n)| ≤ c|g(n)| for sufficiently large n; by this definition −n1000 is
not in O(n2), though it is in O(n1000). This definition was designed for error
terms in asymptotic expansions of functions, where the error term might
represent a positive or negative error.

7.6.2 Abusing the equals sign

Formally, we can think of O(g(n)) as a predicate on functions, which is true of
all functions f(n) that satisfy f(n) ≤ cg(n) for some c and sufficiently large
n. This requires writing that n2 is O(n2) where most computer scientists
or mathematicians would just write n2 = O(n2). Making sense of the latter
statement involves a standard convention that is mildly painful to define
formally but that greatly simplifies asymptotic analyses.

Let’s take a statement like the following:

O(n2) +O(n3) + 1 = O(n3).

CHAPTER 7. ASYMPTOTIC NOTATION 113

What we want this to mean is that the left-hand side can be replaced
by the right-hand side without causing trouble. To make this work formally,
we define the statement as meaning that for any f in O(n2) and any g in
O(n3), there exists an h in O(n3) such that f(n) + g(n) + 1 = h(n).

In general, any appearance of O, Ω, or Θ on the left-hand side gets
a universal quantifier (for all) and any appearance of O, Ω, or Θ on the
right-hand side gets an existential quantifier (there exists). So

f(n) + o(f(n)) = Θ(f(n))

means that for any g in o(f(n)), there exists an h in Θ(f(n)) such that
f(n) + g(n) = h(n), and

O(f(n)) +O(g(n)) + 1 = O(max(f(n), g(n))) + 1

means that for any r inO(f(n)) and s inO(g(n)), there exists t inO(max(f(n), g(n))
such that r(n) + s(n) + 1 = t(n) + 1.

The nice thing about this definition is that as long as you are careful about
the direction the equals sign goes in, you can treat these complicated pseudo-
equations like ordinary equations. For example, since O(n2)+O(n3) = O(n3),
we can write

n2

2 + n(n+ 1)(n+ 2)
6 = O(n2) +O(n3)

= O(n3),

which is much simpler than what it would look like if we had to talk about
particular functions being elements of particular sets of functions.

This is an example of abuse of notation, the practice of redefining
some standard bit of notation (in this case, equations) to make calculation
easier. It’s generally a safe practice as long as everybody understands what
is happening. But beware of applying facts about unabused equations to the
abused ones. Just because O(n2) = O(n3) doesn’t mean O(n3) = O(n2)—the
big-O equations are not reversible the way ordinary equations are.

More discussion of this can be found in [Fer08, §10.4] and [GKP94,
Chapter 9].

Chapter 8

Number theory

Number theory is the study of the natural numbers, particularly their
divisibility properties. Nowadays this often involves bringing in the integers
as well, since being able to subtract can be handy. But the ultimate goal is
to understand the naturals.

If you read about number theory elsewhere, you may find a mismatch
between our definition of N (which includes 0) and the definition favored
by number theorists (which doesn’t). Number theorists like to leave 0 out
because otherwise many theorems about numbers would require annoying
“except 0” clauses. We will write N+ for the positive natural numbers
{n ∈ N | n > 0}, which excludes 0. This is the same set as the positive
integers Z+, which are {x ∈ Z | x > 0}.1

The natural numbers N have commutative and associative addition and
multiplication operations, where each has an identity and multiplication
distributes over addition.2 This makes them a commutative semiring. If
we had additive inverses as well,3 as in Z, we would get commutative ring.
One way to remember that N is a semiring while Z is a ring is that N is
what you get after chopping off half of Z.

1In general, N+, Z+, Q+, and R+ all refer to the positive elements of each set, while
Z−, Q−, and R− are the negative elements. None of these sets includes 0, which is neither
positive nor negative. The set N− of negative natural numbers is technically well-defined,
but since it is empty it doesn’t come up much.

2Formally, N satisfies Axioms 4.1.1, 4.1.2, 4.1.3, 4.1.7, 4.1.8, 4.1.9, and 4.1.11.
3Axiom 4.1.5.

114

CHAPTER 8. NUMBER THEORY 115

8.1 Divisibility
Except for the identity elements 0 and 1, no natural number has an additive
or multiplicative inverse. No multiplicative inverses means that we can’t, in
general, divide a natural number n by another natural number m: given n
and m 6= 0, there is no guarantee that we can write n as qm for some q in N.
If there is such a q, then n is divisible by m, although we usually write this
in the reversed direction by saying that m divides n, written as m | n.

If m | n, m is said to be a factor or divisor of n. A number greater
than 1 whose only factors are 1 and itself is called prime. Non-primes that
are greater than 1 are called composite. The remaining natural numbers 0
and 1 are by convention neither prime nor composite; this allows us to avoid
writing “except 0 or 1” in a lot of places later.

We can use the same definition of divisibility for integers, by letting m
divide n if there is an integer k such that km = n. This gives m | n if and
only |m| divides |n|. This does have some odd consequences, like −7 being
prime. The integer −1 gets the same special exemption as 1—both are units,
numbers that, because they divide the identity, are considered neither prime
nor composite.

Some useful facts about divisibility:

• If d | m and d | n, then d | (m + n). Proof: Let m = ad and n = bd,
then (m+ n) = (a+ b)d.

• If d | n and n 6= 0, then d ≤ n. Proof: n = kd 6= 0 implies k ≥ 1
implies n = kd ≥ d.

• For all d, d | 0. Proof: 0 · d = 0.

• If d|m or d|n, then d|mn. Proof: Suppose m = kd, then mn = (nk)d.
Alternatively, if n = kd, then mn = (mk)d.

• If p is prime, then p | ab if and only if p | a or p | b. Proof: Surprisingly
difficult. We’ll get this as a consequence of the extended Euclidean
algorithm in §8.4.2.

8.2 The division algorithm
If m does not divide n, then any attempt to divide n things into m equal
piles will leave some things left over. In this case, we can use an extended
version of division that expresses n as qm+ r, where q is the quotient of n

CHAPTER 8. NUMBER THEORY 116

and m and r is a remainder satisfying 0 ≤ r < m. The fact that we can do
this is a consequence of the division algorithm, due to Euclid.

The division algorithm yields for any pair of integers (which might or
might not be natural numbers) n and m 6= 0 a unique integer quotient q and
remainder r such that n = qm+ r and 0 ≤ r < |m|.

For positive m, the quotient is often written as bn/mc, the floor of n/m,
to make it clear that we want the integer version of the quotient and not
some nasty fraction; for negative m, we’ll get the ceiling dn/me instead.
The remainder is often written as (n mod m), pronounced “the remainder of
n modulo m” when paid by the word but usually just “n mod m.” Saying
that n mod m = 0 is the same as saying that m divides n (m | n for short).

For non-negative n and m, we can find q and r recursively. If n is already
less than m, we can set q = 0 and r = n, while for larger n, we can compute
n − m = q′m + r recursively and then set q = q + 1. Showing that this
algorithm works is an application of strong induction.4

Theorem 8.2.1 (Division algorithm). Let n,m be integers with m 6= 0. Then
there exist unique integers q and r such that 0 ≤ r < |m| and n = qm+ r.

Proof. First we show that q and r exist for n ≥ 0 and m > 0. This is done
by induction on n. If n < m, then q = 0 and r = n satisfies n = qm+ r and
0 ≤ r < m. If n ≥ m, then n−m ≥ 0 and n−m < n, so from the induction
hypothesis there exist some q′, r such that n−m = q′m+ r and 0 ≤ r < m.
Then if q = q+ 1, we have n = (n−m) +m = q′m+ r+m = (q′+ 1)m+ r =
qm+ r.

Next we extend to the cases where n might be negative. If n < 0 and
m > 0, then there exist q′, r′ with 0 ≤ r < m such that −n = q′m + r. If
r′ = 0, let q = −q′ and r = 0, giving n = −(−n) = −(q′m + r′) = qm + r.
If r′ 6= 0, let q = −q′ − 1 and r = m− r; now n = −(−n) = −(q′m+ r′) =
−(−(q+1)m+(m−r)) = −(−qm−r) = qm+r. So in either case appropriate
q and r exist.

Finally, we consider the case where m is negative. Let n = q′(−m) + r,
where 0 ≤ r < −m. Let q = −q′. Then n = q′(−m) + r = (−q′) ·m+ r =
qm+ r.

So far we have only shown that q and r exist; we haven’t shown that
they are unique. For uniqueness, suppose that n = qm+ r = q′m+ r′, where
0 ≤ r ≤ r′ < |m|. Then (q′m+ r′)− (qm+ r) = 0, which we can rearrange
to get r′ − r = (q − q′)m. In particular, m | (r′ − r), so there exists some k

4Repeated subtraction is not a very good algorithm for division, but it’s what Euclid
used, and since we don’t care about efficiency we’ll stick with it.

CHAPTER 8. NUMBER THEORY 117

such that r′ − r = k · |m|. If k = 0, then r′ = r, from which we can conclude
q′ = q. If k 6= 0, k ≥ 1, so r′ ≥ r′ − r ≥ |m|, contradicting the requirement
that r′ < |m|.

Note that quotients of negative numbers always round down. For example,
b(−3)/17c = −1 even though −3 is much closer to 0 than it is to −17. This
is so that the remainder is always non-negative (14 in this case). This may
or may not be consistent with the behavior of the remainder operator in
your favorite programming language.

8.3 Modular arithmetic and residue classes
From the division algorithm, we have that for each pair of integers n and
m 6= 0, there is a unique remainder r with 0 ≤ r < |m| and n = qm+ r for
some q; this unique r is written as (n mod m). Define n ≡m n′ (read “n is
congruent to n′ mod m”) if (n mod m) = (n′ mod m), or equivalently if
there is some q ∈ Z such that n = n′ + qm.

The set of integers congruent to n mod m is called the residue class
of n (residue is an old word for remainder), and is written as [n]m. The
sets [0]m, [1]m, . . . [m− 1]m between them partition the integers, and the set
{[0]m, [1]m, . . . [m− 1]m} defines the integers mod m, written Zm. We will
see that Zm acts very much like Z, with well-defined operations for addition,
subtraction, and multiplication, making it a commutative ring. In the
case where the modulus is prime, we even get division: Zp is a finite field
for any prime p.

The most well-known instance of Zm is Z2, the integers mod 2. The class
[0]2 is the even numbers and the class [1]2 is the odd numbers.

8.3.1 Arithmetic on residue classes

We can define arithmetic operations on residue classes in Zm just as we defined
arithmetic operations on integers (defined as equivalence classes of pairs of
naturals). Given residue classes [x]m and [y]m, define [x]m + [y]m = [x+ y]m,
where the addition in the right-hand side is the usual integer addition in
Z. Here x and y act as representatives for their respective residue classes.
It’s unusual to write out the brackets; instead, when working in Zm we just
use representatives, or write something like 2 + 3 = 1 (mod 4) if we want to
emphasize that we are taking remainders after each operation.

For example, in Z2 we have 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 0
(since 1 + 1 = 2 ∈ [0]m). For this to make sense, we must verify that this

CHAPTER 8. NUMBER THEORY 118

definition of addition is well-defined: in particular, it shouldn’t matter which
representatives x and y we pick.

To prove this, let’s start with an alternative characterization of when
x ≡m y:

Lemma 8.3.1. Let x, y ∈ Z and let m ∈ N+. Then x ≡m y if and only if
m | (x− y).

Proof. Write x = qm + r, y = sm + t, where 0 ≤ r, s < m. Then x − y =
(q − s)m + (r − t). If m | (x − y), then m | (r − t); since −m < r − t < m
this implies r − t = 0 and thus x mod m = r = t = y mod m. Conversely,
suppose x mod m = y mod m. Then r − t = 0 giving x− y = (q − s)m, so
m | (x− y).

Theorem 8.3.2. If x ≡m x′ and y ≡m y′, then x+ y ≡m x′ + y′.

Proof. From Lemma 8.3.1, m | (x − x′) and m | (y − y′). So m | ((x −
x′) + (y − y′)), which we can rearrange as m | ((x+ y)− (x′ + y′)). Apply
Lemma 8.3.1 in the other direction to get x+ y ≡m x′ + y′.

Similarly, we can define −[x]m = [−x]m and [x]m · [y]m = [x · y]m. The
same approach as in the proof of Theorem 8.3.2 shows that these definitions
also give well-defined operations on residue classes.5

All of the usual properties of addition, subtraction, and multiplication
are inherited from Z: addition and multiplication are commutative and
associative, the distributive law applies, etc. This makes Zm a commutative
ring just like Z.

To give a concrete example, Table 8.1 gives tables for the addition,
multiplication, and negation operators in Z5.

Using these tables, we can do arbitrarily horrible calculations in Z5 using
the same rules as in Z, e.g., 2·(1+3)−4 = 2·4−4 = 3−4 = 3+(−4) = 3+1 = 4
(mod 5). We put the “ (mod 5)” at the end so that the reader won’t think
we’ve gone nuts.

The fact that [x]m+[y]m = [x+y]m and [x]m× [y]m = [xy]m for all x and
y means that the remainder operation x 7→ x mod m is a homomorphism
from Z to Zm: it preserves the operations + and × on Z. The formal
definition of a homomorphism that preserves an operation (say +) is a

5 For [−x]m: Suppose x ≡m x′; then m | (x − x′), which implies m | (−(x − x′)) or
m | ((−x)− (−x′)), giving −x ≡m −x′.
For [x]m · [y]m: Suppose x ≡m x′. Then m | (x − x′) implies m | ((x − x′)y) implies

m | (xy − x′x). So xy ≡m x′y. Applying the same argument shows that if y ≡m y′,
xy ≡m xy′. Transitivity can then be used to show xy ≡m x′y ≡m x′y′.

CHAPTER 8. NUMBER THEORY 119

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

x −x
0 0
1 4
2 3
3 2
4 1

Table 8.1: Arithmetic in Z5

function f such that f(a+ b) = f(a)+f(b). The function x mod m preserves
not only the operations + and × but the constants 0 and 1. This means
that it doesn’t matter when you perform mod operations when converting a
complicated expression in Z to the corresponding expression in Zm. You can
do one big mod at the end, or you can do mods in the middle whenever it’s
convenient, and you will get the same answer either way.

8.4 Greatest common divisors
Let m and n be numbers, where at least one of m and n is nonzero, and
let k be the largest number for which k | m and k | n. Then k is called
the greatest common divisor or gcd of m and n, written gcd(m,n) or
sometimes just (m,n). A similar concept is the least common multiple
(lcm), written lcm(m,n), which is the smallest k such that m | k and n | k.

Formally, g = gcd(m,n) if g | m, g | n, and for any g′ that divides both
m and n, g′ | g. Similarly, ` = lcm(m,n) if m | `, n | `, and for any `′ with
m | `′ and n | `′, ` | `′.

Two numbers m and n whose gcd is 1 are said to be relatively prime
or coprime, or simply to have no common factors.

The divisibility relation is an example of a partial order (§9.5): a set
with a relation ≤ that is transitive, reflexive, and antisymmetric, but where
there might be some x and y such that neither x ≤ y nor y ≤ x holds. If
divisibility is considered as a partial order, the naturals form a lattice (see
§9.5.3), which is a partial order in which every pair of elements x and y has
both a unique greatest element that is less than or equal to both (the meet
x ∧ y, equal to gcd(x, y) in this case) and a unique smallest element that is
greater than or equal to both (the join x∨ y, equal to lcm(x, y) in this case).

CHAPTER 8. NUMBER THEORY 120

8.4.1 The Euclidean algorithm for computing gcd(m, n)
Euclid described in Book VII of his Elements what is now known as the
Euclidean algorithm for computing the gcd of two numbers (his original
version was for finding the largest square you could use to tile a given
rectangle, but the idea is the same). Euclid’s algorithm is based on the
recurrence

gcd(m,n) =
{
n if m = 0,
gcd(n mod m,m) if m > 0,

which holds whenever at least one of m and n is positive.
The first case holds because n | 0 for all n. The second holds because if k

divides both n andm, then k divides n mod m = n−bn/mcm; and conversely
if k divides m and n mod m, then k divides n = (n mod m) +mbn/mc. So
(m,n) and (n mod m,m) have the same set of common factors, and the
greatest of these is the same.

So the algorithm simply takes the remainder of the larger number by the
smaller recursively until it gets a zero, and returns whatever number is left.

8.4.2 The extended Euclidean algorithm

The extended Euclidean algorithm not only computes gcd(m,n), but
also computes integer coefficients m′ and n′ such that

m′m+ n′n = gcd(m,n).

This turns out to have several useful consequences, including the exis-
tences of inverses for any a ∈ Zm with gcd(a,m) = 1 and the fact that when
p is prime, p | ab if and only if p | a or p | b.

It has the same structure as the Euclidean algorithm, but keeps track of
more information in the recurrence. Specifically:

• For m = 0, gcd(m,n) = n with n′ = 1 and m′ = 0.

• For m > 0, let n = qm + r where 0 ≤ r < m, and use the algorithm
recursively to compute a and b such that ar + bm = gcd(r,m) =
gcd(m,n). Substituting r = n−qm gives gcd(m,n) = a(n−qm)+bm =
(b−aq)m+an. This gives both the gcd and the coefficients m′ = b−aq
and n′ = a.

CHAPTER 8. NUMBER THEORY 121

Finding gcd(176,402)
q = 2 r = 50
Finding gcd(50,176)
q = 3 r = 26
Finding gcd(26,50)
q = 1 r = 24
Finding gcd(24,26)
q = 1 r = 2
Finding gcd(2,24)
q = 12 r = 0
Finding gcd(0,2)
base case
Returning 0*0 + 1*2 = 2
a = b1 - a1*q = 1 - 0*12 = 1
Returning 1*2 + 0*24 = 2
a = b1 - a1*q = 0 - 1*1 = -1
Returning -1*24 + 1*26 = 2
a = b1 - a1*q = 1 - -1*1 = 2
Returning 2*26 + -1*50 = 2

a = b1 - a1*q = -1 - 2*3 = -7
Returning -7*50 + 2*176 = 2
a = b1 - a1*q = 2 - -7*2 = 16
Returning 16*176 + -7*402 = 2

Figure 8.1: Trace of extended Euclidean algorithm

8.4.2.1 Example

Figure 8.1 gives a computation of the gcd of 176 and 402, together with the
extra coefficients. The code used to generate this figure is given in Figure 8.2.

8.4.2.2 Applications

• If gcd(n,m) = 1, then there is a number n′ such that nn′ + mm′ =
1, which means nn′ = 1 (mod m). This number n′ is called the
multiplicative inverse of n mod m and acts much like 1/n when
doing modular arithmetic (see §8.6.1).

• If p is prime and p | ab, then either p | a or p | b. Proof: suppose p - a;

CHAPTER 8. NUMBER THEORY 122

#!/usr/bin/python3

def euclid(m, n, trace = False, depth = 0):
"""Implementation of extended Euclidean algorithm.

Returns triple (a, b, g) where am + bn = g and g = gcd(m, n).

Optional argument trace, if true, shows progress."""

def output(s):
if trace:

print("{}{}".format(’ ’ * depth, s))

output("Finding gcd({},{})".format(m, n))

if m == 0:
output("base case")
a, b, g = 0, 1, n

else:
q = n//m
r = n % m
output("q = {} r = {}".format(q, r))
a1, b1, g = euclid(r, m, trace, depth + 1)
a = b1 - a1*q
b = a1
output("a = b1 - a1*q = {} - {}*{} = {}".format(b1, a1, q, a))

output("Returning {}*{} + {}*{} = {}".format(a, m, b, n, g))
return a, b, g

if __name__ == ’__main__’:
import sys

euclid(int(sys.argv[1]), int(sys.argv[2]), True)

Figure 8.2: Python code for extended Euclidean algorithm

CHAPTER 8. NUMBER THEORY 123

since p is prime we have gcd(p, a) = 1. So there exist r and s such
that rp+ sa = 1. Multiply both sides by b to get rpb+ sab = b. Then
p | rpb and p | sab (the latter because p | ab), so p divides their sum
and thus p | b. This is a key tool for proving the Fundamental Theorem
of Arithmetic (§8.5), and also shows that Zp has no zero divisors,
nonzero numbers a and b such that ab = 0.6

8.5 The Fundamental Theorem of Arithmetic
Let n be a number greater than 0. Then there is a unique sequence of
primes p1 ≤ p2 ≤ . . . ≤ pk such that n = p1p2 . . . pk. This fact is known as
the Fundamental Theorem of Arithmetic, and the sequence p1 . . . pk is
called the prime factorization of n.

Showing that there is at least one such sequence is an easy induction
argument. If n = 1, take the empty sequence; by convention, the product
of the empty sequence is the multiplicative identity, 1. If n is prime, take
p1 = n; otherwise, let n = ab where a and b are both greater than 1. Then
n = p1 . . . pkq1 . . . qm where the pi are the prime factors of a and the qi
are the prime factors of b. Unfortunately, this simple argument does not
guarantee uniqueness of the sequence: it may be that there is some n with
two or more distinct prime factorizations.

We can show that the prime factorization is unique by an induction
argument that uses the fact that p | ab implies p | a or p | b, which we
proved using the extended Euclidean algorithm in §8.4.2.2. If n = 1, then
any non-empty sequence of primes has a product greater than 1; it follows
that the empty sequence is the unique factorization of 1. If n is prime, any
factorization other than n alone would show that it isn’t; this provides a
base case of n = 2 and n = 3 as well as covering larger values of n that are
prime. So suppose that n is composite, and that n = p1 . . . pk = q1 . . . qm,
where {pi} and {qi} are nondecreasing sequences of primes. Suppose also (by
the induction hypothesis) that any n′ < n has a unique prime factorization.

If p1 = q1, then p2 . . . pk = q2 . . . qm, and so the two sequences are identical
by the induction hypothesis. Alternatively, suppose that p1 < q1; note that
this also implies p1 < qi for all i, so that p1 doesn’t appear anywhere in
the second factorization of n. But then p doesn’t divide q1 . . . qm = n, a
contradiction.

6This is not true in Zm when m is not prime, since we can just pick a and b so that
ab = m.

CHAPTER 8. NUMBER THEORY 124

8.5.1 Unique factorization and gcd

Using unique factorization, we can compute gcd(a, b) by factoring both a
and b and retaining all the common factors, which is the algorithm favored
in elementary school when dealing with small numbers. Without unique
factorization, this wouldn’t work: we might get unlucky and factor a or b
the wrong way so that the common factors didn’t line up. For very large
numbers, computing prime factorizations becomes impractical, so Euclid’s
algorithm is a better choice.

Similarly, for every a and b, we can compute the least common multiple
lcm(a, b) by taking the maximum of the exponents on each prime that
appears in the factorization of a or b. (It can also be found by computing
lcm(a, b) = ab/ gcd(a, b), which is more efficient for large a and b because we
don’t have to factor.)

One way to look at this is that we can represent any n in N+ as a se-
quence of exponents, where the i-th element in the sequence is the exponent
on the i-th prime. So, for example, 24 = 23 · 31 would be represented by
the sequence 〈3, 1, 0, 0, 0, . . .〉 and 675 = 33 · 52 would be represented by
〈0, 3, 2, 0, 0, 0, . . .〉. Taking the gcd of two numbers corresponds to taking
the componentwise min of the corresponding sequences, while taking the
lcm corresponds to the componentwise max. This has gcd(24, 675) rep-
resented by 〈0, 1, 0, 0, 0, 0, . . .〉 = 51 = 5 and lcm(24, 675) represented by
〈3, 3, 2, 0, 0, 0, . . .〉 = 23 · 33 · 52 = 5400.

8.6 More modular arithmetic
Here we will look a little more closely at the structure of Zm, then integers
mod m.

8.6.1 Division in Zm
One thing we don’t get general in Zm is the ability to divide. This is not
terribly surprising, since we don’t get to divide (without remainders) in
Z either. But for some values of x and m we can in fact do division: for
these x and m there exists a multiplicative inverse x−1 (mod m) such
that xx−1 = 1 (mod m). We can see the winning x’s for Z9 by looking for
ones in the multiplication table for Z9, given in Table 8.2.

Here we see that 1−1 = 1, as we’d expect, but that we also have 2−1 = 5,
4−1 = 7, 5−1 = 2, 7−1 = 4, and 8−1 = 8. There are no inverses for 0, 3, or 6.

CHAPTER 8. NUMBER THEORY 125

× 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8
2 0 2 4 6 8 1 3 5 7
3 0 3 6 0 3 6 0 3 6
4 0 4 8 3 7 2 6 1 5
5 0 5 1 6 2 7 3 8 4
6 0 6 3 0 6 3 0 6 3
7 0 7 5 3 1 8 6 4 2
8 0 8 7 6 5 4 3 2 1

Table 8.2: Multiplication table for Z9

What 1, 2, 4, 5, 7, and 8 have in common is that they are all relatively
prime to 9. This is not an accident: when gcd(x,m) = 1, we can use the
extended Euclidean algorithm (§8.4.2) to find x−1 (mod m). Observe that
what we want is some x′ such that xx′ ≡m 1, or equivalently such that
x′x+ qm = 1 for some q. But the extended Euclidean algorithm finds such
an x′ (and q) whenever gcd(x,m) = 1.

If gcd(x,m) 6= 1, then x has no multiplicative inverse in Zm. The reason
is that if some d > 1 divides both x and m, it continues to divide xx′ and
m for any x′ 6= 0. So in particular xx′ can’t be congruent to 1 mod m since
qm+ 1 and m don’t share any common factors for any value of q.

The set of of residue classes [x]m where gcd(x,m) = 1 is written as Z∗m.
For a prime p, Z∗p includes all non-zero elements of Zp, since gcd(x, p) = 1 for
any x that is not 0 or a multiple of p. This means that Zp satisfies the same
field axioms (§4.1) as Q or R: in Zp, we can add, subtract, multiply, and
divide by any number that’s not 0, and all of these operations behave the way
we expect. However, Zp is not an ordered field, since the fact that numbers
wrap around means that we can’t define a ≤ relation that is invariant with
respect to translation or scaling.

Unlike addition, subtraction, and multiplication, division in Zp doesn’t
project down from a corresponding operation in Z or Q, the way that addition,
subtraction, and multiplication do. So while we can write 3

4 = 3·4−1 = 3·4 = 2
(mod 5), if we compute 3

4 first (in Q, say), there is no natural mapping from
Q to Z5 that sends 3

4 to 2.7

7While we could define a mapping f(p/q) = (p mod 5)(q mod 5)−1 that would work for
many rationals, the problem is what to do with fractions like 3

5 .

CHAPTER 8. NUMBER THEORY 126

8.6.2 The Chinese Remainder Theorem

In the form typically used today, the Chinese Remainder Theorem
(CRT for short) looks like this:8

Theorem 8.6.1 (Chinese Remainder Theorem). Let m1 and m2 be relatively
prime.9 Then for each pair of equations

n mod m1 = n1,

n mod m2 = n2,

there is a unique solution n with 0 ≤ n < m1m2.

We’ll defer the proof for a moment and give an example to show what
the theorem means. Suppose m1 = 3 and m2 = 4. Then the integers n from
0 to 11 can be represented as pairs 〈n1, n2〉 with no repetitions as follows:

n n1 n2
0 0 0
1 1 1
2 2 2
3 0 3
4 1 0
5 2 1
6 0 2
7 1 3
8 2 0
9 0 1
10 1 2
11 2 3

This gives a factorization of Z12 as Z3 × Z4. This doesn’t just mean that
we can represent elements of Z12 as pairs of elements in Z3 × Z4; since this
factorization is an isomorphism, we can do arithmetic on these pairs and
get the same answers as if we did the arithmetic in Z12. For example, the
element 7 of Z12 is represented by the pair 〈1, 3〉 in Z3 × Z4, and similarly 5

8The earliest known written version of the theorem appeared in The Mathematical Classic
of Sunzi, a Chinese text from the Song dynasty. The first convincing proof of the result is due
to the fifth-century Indian mathematician Aryabhata. The name “Chinese Remainder Theo-
rem” appears to be much more recent. See http://mathoverflow.net/questions/11951/
what-is-the-history-of-the-name-chinese-remainder-theorem for a discussion of the
history of the name.

9This means that gcd(m1,m2) = 1.

http://mathoverflow.net/questions/11951/what-is-the-history-of-the-name-chinese-remainder-theorem
http://mathoverflow.net/questions/11951/what-is-the-history-of-the-name-chinese-remainder-theorem

CHAPTER 8. NUMBER THEORY 127

is represented by 〈2, 1〉. So to multiply 7 · 5 in Z12, we can instead multiply
〈1, 3〉 by 〈2, 1〉 componentwise in Z3 × Z4. This gives 〈1 · 2, 3 · 1〉 = 〈2, 3〉,
which from the above list we can see corresponds to 11 in Z12. This matches
the result we get from 7 · 5 = 35 = 11 (mod 12).

Proof. We’ll show an explicit algorithm for constructing the solution. The
first trick is to observe that if a | b, then (x mod b) mod a = x mod a.
The proof is that x mod b = x − qb for some q, so (x mod b) mod a =
(x mod a)− (qb mod a) = x mod a since any multiple of b is also a multiple
of a, giving qb mod a = 0.

Since m1 and m2 are relatively prime, the extended Euclidean algorithm
gives m′1 and m′2 such that m′1m1 = 1 (mod m2) and m′2m2 = 1 (mod m1).
Let n = (n1m

′
2m2 + n2m

′
1m1) mod m1m2. Then

n mod m1 = ((n1m
′
2m2 + n2m

′
1m1) mod m1m2) mod m1

= (n1m
′
2m2 + n2m

′
1m1) mod m1

= (n1 · 1 + n2m
′
1 · 0) mod m1

= n1 mod m1

= n1.

A nearly identical calculation shows n mod m2 = n2 as well.
The intuition is that m′2m2 acts like 1 mod m1 and 0 mod m2, and vice

versa for m′1m1. Having found these basic solutions for (1, 0) and (0, 1),
solutions for arbitrary (n1, n2) are just a matter of adding up enough of each.

That the solution for each pair is unique can be shown by counting: there
are m1m2 possible choices for both pairs (n1, n2) and solutions n, so if some
pair has more than one solution, some other pair must have none.10 But we
have just given an algorithm for generating a solution for any pair.

The general version allows for any number of equations, as long as the
moduli are pairwise relatively prime, which means that each pair of moduli
have a gcd of 1. The full result is:

Theorem 8.6.2 (Chinese Remainder Theorem (general version)). Letm1, . . . ,mk

satsify gcd(mi,mj) = 1 for all pairs i, j with i 6= j. Then any system of
equations

n = ni (mod mi)

has a unique solution n with 0 ≤ n ≤
∏
imi.

10This is an application of the Pigeonhole Principle (§11.1.3.2), which works for finite
sets.

CHAPTER 8. NUMBER THEORY 128

Proof. The solution can be computed using the formula

n =

∑
i

ni
∏
j 6=i

(m−1
j (mod mi))mj

 mod
∏
i

mi.

As in the two-modulus case, the factor (m−1
j (mod mi))mj , where m−1

j

(mod mi) is the multiplicative inverse of mj mod mi, acts like 1 mod mi and
0 mod mj . So for any fixed k,

n mod mk =

∑
i

ni
∏
j 6=i

(m−1
j (mod mi))mj

 mod
∏
i

mi

 mod mk

=

∑
i

ni
∏
j 6=i

(m−1
j (mod mi))mj

 mod mk

=

nk · 1 +
∑
i 6=k

(ni · 0)

 mod mk

= nk.

Uniqueness again follows by counting.

The full CRT gives a solution to any collection of equations of the
appropriate form. If we take just the uniqueness part, it tells us that any
two such solutions are equivalent mod m1m2 . . .mk. This can be expressed
as:

Corollary 8.6.3. Let m1, . . . ,mk be pairwise relatively prime, and for all
i ∈ {1, . . . , k}, let

x = y (mod mi).

Then

x = y (mod Πk
i=1mi).

8.6.3 The size of Z∗m and Euler’s Theorem

Recall that Z∗m is the set of numbers 0 ≤ k < m such that gcd(m, k) = 1, or
equivalently the set of elements of Zm that have multiplicative inverses.

The size of Z∗m is written φ(m) and is called Euler’s totient function or
just the totient ofm. When p is prime, gcd(n, p) = 1 for all n with 0 < n < p,

CHAPTER 8. NUMBER THEORY 129

so φ(p) =
∣∣∣Z∗p∣∣∣ = p−1. For a prime power pk, we similarly have gcd(n, pk) = 1

unless p | n. There are exactly pk−1 numbers less than pk that are divisible
by p (they are 0, p, 2p, . . . (pk − 1)p), so φ(pk) = pk − pk−1 = pk−1(p− 1).11

For composite numbers m that are not prime powers, finding the value of
φ(m) is more complicated; but we can show using the Chinese Remainder
Theorem (Theorem 8.6.1) that in general

φ

(
k∏
i=1

peii

)
=

k∏
i=1

pei−1
i (pi − 1).

One reason φ(m) is important is that it plays a central role in Euler’s
Theorem:

Theorem 8.6.4. Let gcd(a,m) = 1. Then

aφ(m) = 1 (mod m).

Proof. We will prove this using an argument adapted from the proof of [Big02,
Theorem 13.3.2]. Let z1, z2, . . . , zφ(m) be the elements of Z∗m. For any y ∈ Z∗m,
define yZ∗m =

{
yz1, yz2, . . . , yzφ(m)

}
. Since y has a multiplicative inverse

mod m, the mapping z 7→ yz (mod m) is a bijection, and so yZ∗m = Z∗m
(mod m). It follows that

∏
i zi =

∏
i yzi = yφ(m)∏

i zi (mod m). But now
multiply both sides by (

∏
i zi)

−1 =
∏
i z
−1
i to get 1 = yφ(m) (mod m) as

claimed.

For the special case that m is a prime, Euler’s Theorem is known as
Fermat’s Little Theorem, and says that ap−1 = 1 (mod p) for all primes
p and all a such that p - a. Fermat proved this result before Euler generalized
it to composite m, which is why we have two names.

8.7 RSA encryption
Euler’s Theorem is useful in cryptography. For example, the RSA en-
cryption system is based on the fact that (xe)d = x (mod m) when m
is the product of two distinct primes p and q , de = 1 (mod φ(m)), and
0 ≤ x < m.12 So x can be encrypted by raising it to the e-th power mod m,

11Note that φ(p) = φ(p1) = p1−1(p− 1) = p− 1 is actually a special case of this.
12This is not quite immediate from Euler’s Theorem, because Euler’s Theorem only says

that xφ(m) = 1 (mod m) when gcd(x,m) = 1. But we can use the Chinese Remainder
Theorem to prove xde = xk(p−1)(q−1)+1 = x (mod m) holds even if gcd(x, pq) 6= 1, as

CHAPTER 8. NUMBER THEORY 130

and decrypted by raising the result to the d-th power. It is widely believed
that publishing e and m reveals no useful information about d provided e
and m are chosen carefully.

Specifically, the person who wants to receive secret messages chooses
large primes p and q, and finds d and e such that de = 1 (mod (p−1)(q−1)).
They then publish m = pq (the product, not the individual factors) and e.

Encrypting a message x involves computing xe mod m. If x and e are
both large, computing xe and then taking the remainder is an expensive
operation; but it is possible to get the same value by computing xe in stages
by repeatedly squaring x and taking the product of the appropriate powers.
To decrypt xe, compute (xe)d mod m.

For example, let p = 7, q = 13, so m = 91. The totient φ(m) of m is
(p − 1)(q − 1) = 6 · 12 = 72. Next pick some e relatively prime to φ(m):
e = 5. Since 5 · 29 = 72 · 2 + 1 we can make d = 29. Note that to compute d
in this way, we needed to know how to factor m so that we could compute
(p− 1)(q − 1); it’s not known how to find d otherwise.

Now let’s encrypt a message. Say we want to encrypt 11. Using e = 5
and m = 91, we can compute:

111 = 11
112 = 121 = 30
114 = 302 = 900 = 81
115 = 114 · 111 = 81 · 11 = 891 = 72.

When the recipient (who knows d) receives the encrypted message 72,

long as p 6= q and both are prime. The idea is that Zpq factors as Zp × Zq, so we
can represent x ∈ Zp as a pair 〈xp, xq〉 where xp = x mod p and xq = x mod q. Then
xdep =

(
xp−1
p

)k(q−1) · xp = xp mod p, because either xp = 0 (mod p) and the product is
also 0; or xp 6= 0 (mod p) and Euler’s Theorem gives xp−1 = 1 (mod p). Since the same
thing works on the q side, we get

〈
xdep , x

de
q

〉
= 〈xp, xq〉, and thus xde = x by CRT.

For large p and q, that RSA works even with gcd(x, pq) = 1 is a bit of a curiosity,
since for gcd(x, pq) not to be 1 then either p | x or q | x. Not only is this spectacularly
improbable, but if we do happen to find such an x, we break the encryption: by taking
gcd(x,m) we recover one of the factors of m, and now we can find both and compute d. So
most analyses of RSA just assume gcd(x,m) = 1 and use Euler’s Theorem directly with
modulus m.

CHAPTER 8. NUMBER THEORY 131

they can recover the original by computing 7229 mod 91:

721 = 72
722 = 5184 = 88
724 = 882 = (−3)2 = 9
728 = 92 = 81

7216 = 812 = (−10)2 = 100 = 9
7229 = 7216 · 728 · 724 · 721 = 9 · 81 · 9 · 72 = 812 · 72 = 9 · 72 = 648 = 11.

Note that we are working in Z91 throughout. This is what saves us from
computing the actual value of 7229 in Z,13 and only at the end taking the
remainder.

For actual security, we need m to be large enough that it’s hard to
recover p and q using presently conceivable factoring algorithms. Typical
applications choose m in the range of 2048 to 4096 bits (so each of p and q
will be a random prime between roughly 10308 and 10617. This is too big to
show a hand-worked example, or even to fit into the much smaller integer
data types shipped by default in many programming languages, but it’s not
too large to be able to do the computations efficiently with good large integer
arithmetic library.

13If you’re curious, it’s 728857113063526668247098229876984590549890725463457792.

Chapter 9

Relations

A binary relation from a set A to a set B is a subset of A×B. In general,
an n-ary relation on sets A1, A2, . . . , An is a subset of A1 ×A2 × . . .×An.
We will mostly be interested in binary relations, although n-ary relations
are important in databases. Unless otherwise specified, a relation will be a
binary relation. A relation from A to A is called a relation on A; many of
the interesting classes of relations we will consider are of this form. Some
simple examples are the relations =, <, ≤, and | (divides) on the integers.

You may recall that functions are a special case of relations, but most of
the relations we will consider now will not be functions.

Binary relations are often written in infix notation: instead of writing
(x, y) ∈ R, we write xRy. This should be pretty familiar for standard
relations like < but might look a little odd at first for relations named with
capital letters.

9.1 Representing relations
In addition to representing a relation by giving an explicit table ({(0, 1), (0, 2), (1, 2)})
or rule (xRy if x < y, where x, y ∈ {0, 1, 2}), we can also visualize relations
in terms of other structures built on pairs of objects.

9.1.1 Directed graphs

A directed graph consists of a set of vertices V and a set of edges E,
where each edge E has an initial vertex or source init(e) and a terminal
vertex or sink term(E). A simple directed graph has no parallel edges:
there are no edges e1 and e2 with init(e1) = init(e2) and term(e1) = term(e2).

132

CHAPTER 9. RELATIONS 133

Figure 9.1: A directed graph

1 2

3

Figure 9.2: Relation {(1, 2), (1, 3), (2, 3), (3, 1)} represented as a directed
graph

If we don’t care about the labels of the edges, a simple directed graph
can be described by giving E as a subset of V × V ; this gives a one-to-one
correspondence between relations on a set V and (simple) directed graphs.
For relations from A to B, we get a bipartite directed graph, where all
edges go from vertices in A to vertices in B.

Directed graphs are drawn using a dot or circle for each vertex and an
arrow for each edge, as in Figure 9.1.

This also gives a way to draw relations. For example, the relation
on {1, 2, 3} given by {(1, 2), (1, 3), (2, 3), (3, 1)} can be depicted as show in
Figure 9.2.

A directed graph that contains no sequence of edges leading back to
its starting point is called a directed acyclic graph or DAG. DAGs are
important for representing partially-ordered sets (see §9.5).

9.1.2 Matrices

A matrix is a two-dimensional analog of a sequence: in full generality, it is
a function A : S × T → U , where S and T are the index sets of the matrix
(typically {1 . . . n} and {1 . . .m} for some n and m). As with sequences, we
write Aij for A(i, j). Matrices are typically drawn inside square brackets like

CHAPTER 9. RELATIONS 134

this:

A =

0 1 1 0
2 1 0 0
1 0 0 −1

The first index of an entry gives the row it appears in and the second one

the column, so in this example A2,1 = 2 and A3,4 = −1. The dimensions of
a matrix are the numbers of rows and columns; in the example, A is a 3× 4
(pronounced “3 by 4”) matrix.

Note that rows come before columns in both indexing (Aij : i is row, j
is column) and giving dimensions (n ×m: n is rows, m is columns). Like
the convention of driving on the right (in many countries), this choice is
arbitrary, but failing to observe it may cause trouble.

Matrices are used heavily in linear algebra (Chapter 13), but for the
moment we will use them to represent relations from {1 . . . n} to {1 . . .m},
by setting Aij = 0 if (i, j) is not in the relation and Aij = 1 if (i, j) is. So
for example, the relation on {1 . . . 3} given by {(i, j) | i < j} would appear
in matrix form as 0 1 1

0 0 1
0 0 0

 .
When used to represent the edges in a directed graph, a matrix of this

form is called an adjacency matrix.

9.2 Operations on relations

9.2.1 Composition

Just like functions, relations can be composed: given relations R ⊆ A×B
and S ⊆ B×C we define (S ◦R) ⊆ A×C by the rule (x, z) ∈ (S ◦R) if and
only if there exists some y ∈ B such that (x, y) ∈ R and (y, z) ∈ S. (In infix
notation: x(S ◦R)z ↔ ∃y : xRy ∧ ySz.) It’s not hard to see that ordinary
function composition ((f ◦ g)(x) = f(g(x))) is just a special case of relation
composition.

In matrix terms, composition acts like matrix multiplication, where
we replace scalar multiplication with AND and scalar addition with OR:
(S ◦R)ij =

∨
k(Rik ∧ Skj). Note that if we use the convention that Rij = 1 if

iRj the order of the product is reversed from the order of composition.
Composition is associative: (R ◦ S) ◦ T = R ◦ (S ◦ T) for any relations

for which the composition makes sense. (This is easy but tedious to prove.)

CHAPTER 9. RELATIONS 135

For relations on a single set, we can iterate composition: Rn is defined
by R0 = (=) and Rn+1 = R ◦ Rn. (This also works for functions, bearing
in mind that the equality relation is also the identity function.) In directed
graph terms, xRny if and only if there is a path of exactly n edges from x to
y (possibly using the same edge more than once).

9.2.2 Inverses

Relations also have inverses: xR−1y ↔ yRx. Unlike functions, every
relation has an inverse.

9.3 Classifying relations
Certain properties of relations on a set are important enough to be given
names that you should remember.

Reflexive A relation R on a set A is reflexive if (a, a) is in R for all a in
A. The relations = and ≤ are both reflexive; < is not. The equality
relation is in a sense particularly reflexive: a relation R is reflexive if
and only if it is a superset of =.

Symmetric A relation R is symmetric if (a, b) is in R whenever (b, a) is.
Equality is symmetric, but ≤ is not. Another way to state symmetry
is that R = R−1.

Antisymmetric A relation R is antisymmetric if the only way that both
(a, b) and (b, a) can be in R is if a = b. (More formally: aRb ∧ bRa→
a = b.) The “less than” relation < is antisymmetric: if a is less than b,
b is not less than a, so the premise of the definition is never satisfied.
The “less than or equal to” relation ≤ is also antisymmetric; here it
is possible for a ≤ b and b ≤ a to both hold, but only if a = b. The
set-theoretic statement is R is symmetric if and only if R ∩R−1 ⊆ (=).
This is probably not as useful as the simple definition.

Transitive A relation R is transitive if (a, b) in R and (b, c) in R implies
(a, c) in R. The relations =, <, and ≤ are all transitive. The relation
{(x, x+ 1) | x ∈ N} is not. The set-theoretic form is that R is transitive
if R2 ⊆ R, or in general if Rn ⊆ R for all n > 0.

CHAPTER 9. RELATIONS 136

9.4 Equivalence relations
An equivalence relation is a relation that is reflexive, symmetric, and
transitive. Equality is the model of equivalence relations, but some other
examples are:

• Equality mod m: The relation x = y (mod m) that holds when x
and y have the same remainder when divided by m is an equivalence
relation. This is often written as x ≡m y.

• Equality after applying a function: Let f : A → B be any function,
and define x ∼f y if f(x) = f(y). Then ∼f is an equivalence relation.
Note that ≡m is a special case of this.

• Membership in the same block of a partition: Let A be the union of
a collection of sets Ai where the Ai are all disjoint. The set {Ai} is
called a partition of A, and each individual set Ai is called a block
of the partition. Let x ∼ y if x and y appear in the same block Ai for
some i. Then ∼ is an equivalence relation.

• Product equivalence relations: If ∼A is an equivalence relation on A,
and ∼B is an equivalence relation on B, then ∼A×B is the equivalence
relation on A×B defined by (a, b) ∼A×B (a′, b′) if and only if a ∼A a′
and b ∼A b′.

• Directed graph isomorphism: Suppose that G = (V,E) and G′ =
(V ′, E′) are directed graphs, and there exists a bijection f : V → V ′

such that (u, v) is in E if and only if (f(u), f(v)) is in E′. Then G
and G′ are said to be isomorphic (from Greek “same shape”). The
relation G ∼= G′ that holds when G and G′ are isomorphic is easily
seen to be reflexive (let f be the identity function), symmetric (replace
f by f−1), transitive (compose f : G→ G′ and g : G′ → G′′); thus it
is an equivalence relation.

• Partitioning a plane: draw a curve in a plane (i.e., pick a continuous
function f : [0, 1] → R2). Let x ∼ y if there is a curve from x to y
(i.e., a curve g with g(0) = x and g(1) = y) that doesn’t intersect the
first curve. Then x ∼ y is an equivalence relation on points in the
plane excluding the curve itself. Proof: To show x ∼ x, let g be the
constant function g(t) = x. To show x ∼ y ↔ y ∼ x, consider some
function g demonstrating x ∼ y with g(0) = x and g(1) = y and let
g′(t) = g(1 − t). To show x ∼ y and y ∼ z implies x ∼ z, let g be a

CHAPTER 9. RELATIONS 137

curve from x to y and g′ a curve from y to z, and define a new curve
(g + g′) by (g + g′)(t) = g(2t) when t ≤ 1/2 and (g + g′)(t) = g′(2t− 1)
when t ≥ 1/2.

Any equivalence relation ∼ on a set A gives rise to a set of equivalence
classes, where the equivalence class of an element a is the set of all b such
that a ∼ b. Because of transitivity, the equivalence classes form a partition
of the set A, usually written A/ ∼ (pronounced “the quotient set of A by
∼, “A slash ∼,” or sometimes “A modulo ∼”). A member of a particular
equivalence class is said to be a representative of that class. For example,
the equivalence classes of equality modm are the sets [i]m = {i+ km | k ∈ N},
with one collection of representatives being {0, 1, 2, 3, . . . ,m− 1}. A more
complicated case are the equivalence classes of the plane partitioning example;
here the equivalence classes are essentially the pieces we get after cutting out
the curve f , and any point on a piece can act as a representative for that
piece.

This gives us several equally good ways of showing that a particular
relation ∼ is an equivalence relation:

Theorem 9.4.1. Let ∼ be a relation on A. Then each of the following
conditions implies the others:

1. ∼ is reflexive, symmetric, and transitive.

2. There is a partition of A into disjoint equivalence classes Ai such
that x ∼ y if and only if x ∈ Ai and y ∈ Ai for some i.

3. There is a set B and a function f : A→ B such that x ∼ y if and only
if f(x) = f(y).

Proof. We do this in three steps:

• (1 → 2). For each x ∈ A, let Ax = [x]∼ = {y ∈ A | y ∼ x}, and let
the partition be {Ax | x ∈ A}. (Note that this may produce duplicate
indices for some sets.) By reflexivity, x ∈ Ax for each x, so A =

⋃
xAx.

To show that distinct equivalence classes are disjoint, suppose that
Ax ∩Ay 6= ∅. Then there is some z that is in both Ax and Ay, which
means that z ∼ x and z ∼ y; symmetry reverses these to get x ∼ z
and y ∼ z. If q ∈ Ax, then q ∼ x ∼ z ∼ y, giving q ∈ Ay; conversely, if
q ∈ Ay, then q ∼ y ∼ z ∈ x, giving q ∈ Ax. It follows that Ax = Ay.

• (2 → 3). Let B = A/ ∼ = {Ax}, where each Ax is defined as above.
Let f(x) = Ax. Then x ∼ y implies x ∈ Ay implies Ax∩Ay 6= ∅. We’ve

CHAPTER 9. RELATIONS 138

shown above that if this is the case, Ax = Ay, giving f(x) = f(y).
Conversely, if f(x) 6= f(y), then Ax 6= Ay, giving Ax ∩ Ay = ∅. In
particular, x ∈ Ax means x 6∈ Ay, so x 6∼ y.

• (3→ 1). Suppose x ∼ y if and only if f(x) = f(y) for some f . Then
f(x) = f(x), so x ∼ x: (∼) is reflexive. If x ∼ y, then f(x) = f(y),
giving f(y) = f(x) and thus y ∼ x: (∼) is symmetric. If x ∼ y ∼ z,
then f(x) = f(y) = f(z), and f(x) = f(z), giving x ∼ z: (∼) is
transitive.

9.4.1 Why we like equivalence relations

Equivalence relations are the way that mathematicians say “I don’t care.”
If you don’t care about which integer you’ve got except for its remainder
when divided by m, then you define two integers that don’t differ in any
way that you care about to be equivalent and work in Z/ ≡m. This turns
out to be incredibly useful for defining new kinds of things: for example, we
can define multisets (sets where elements can appear more than once) by
starting with sequences, declaring x ∼ y if there is a permutation of x that
reorders it into y, and then defining a multiset as an equivalence class with
respect to this relation.

This can also be used informally: “I’ve always thought that broccoli,
spinach, and kale are in the same equivalence class.”1

9.5 Partial orders
A partial order is a relation ≤ that is reflexive, transitive, and antisymmet-
ric. The last means that if x ≤ y and y ≤ x, then x = y. A set S together
with a partial order ≤ is called a partially ordered set or poset. A strict
partial order is a relation < that is irreflexive (x 6< x) and transitive. Any
partial order ≤ can be converted into a strict partial order < and vice versa
by deleting/including the pairs (x, x) for all x. This is equivalent to our
usual definition of x < y if and only if x ≤ y and x 6= y.

A total order is a partial order ≤ in which any two elements are
comparable. This means that, given x and y, either x ≤ y or y ≤ x. A
poset (S,≤) where ≤ is a total order is called totally ordered. Not all

1Curious fact: two of these unpopular vegetables are in fact cultivars of the same species
Brassica oleracea of cabbage.

CHAPTER 9. RELATIONS 139

partial orders are total orders; for an extreme example, the poset (S,=) for
any set S with two or more elements is partially ordered but not totally
ordered.

Examples:

• (N,≤) is a poset. It is also totally ordered.

• (N,≥) is also both partially ordered and totally ordered. In general,
if R is a partial order, then R−1 is also a partial order; similarly for
total orders. This property is known as duality and has the very nice
consequence that any concept we can define in terms of a partial order
≤ has a corresponding concept defined in terms of its inverse ≥.

• The divisibility relation a | b on natural numbers, where a | b if and
only if there is some k in N such that b = ak, is reflexive (let k = 1),
antisymmetric (if a | b, then a ≤ b, so if a | b and b | a then a ≤ b
and b ≤ a implying a = b) and transitive (if b = ak and c = bk′ then
c = akk′). Thus it is a partial order.

• Let (A,≤A) and (B,≤B) be posets. Then the relation ≤ on A × B
defined by (a, b) ≤ (a′, b′) ff and only if a ≤ a′ and b ≤ b′ is a partial
order. The poset (A×B,≤) defined in this way is called the product
poset of A and B.

• Again let (A,≤A) and (B,≤B) be posets. The relation ≤ on A × B
defined by (a, b) ≤ (a′, b′) if either (1) a < a′ or (2) a = a′ and b ≤ b′

is called lexicographic order on A×B and is a partial order. The
useful property of lexicographic order (lex order for short) is that if
the original partial orders are total, so is the lex order: this is why
dictionary-makers use it. This also gives a source of very difficult-to-
visualize total orders, like lex order on R × R, which looks like the
classic real number line where every point is replaced by an entire copy
of the reals.

• Let Σ be some alphabet and consider the set Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 . . . of
all finite words drawn from Σ. Given two words x and y, let x ≤ y if x
is a prefix of y, i.e. if there is some word z such that xz = y. Then
(Σ∗,≤) is a poset.

• Using the same set Σ∗, let x v y if x is a subsequence of y, i.e., if
there is a sequence of increasing positions i1 < i2 < · · · < ik such that
xj = yij . (For example, bd v abcde.) Then (Σ∗,v) is a poset.

CHAPTER 9. RELATIONS 140

There are also some common relations that are not partial orders or
strict partial orders but come close. For example, the element-of relation (∈)
is irreflexive and antisymmetric (this ultimately follows from the Axiom of
Foundation) but not transitive; if x ∈ y and y ∈ z we do not generally expect
x ∈ z. The “is at least as rich as” relation is reflexive and transitive but not
antisymmetric: if you and I have a net worth of 0, we are each as rich as the
other, and yet we are not the same person. Relations that are reflexive and
transitive (but not necessarily antisymmetric) are called quasi-orders or
pre-orders and can be turned into partial orders by defining an equivalence
relation x ∼ y if x ≤ y and y ≤ x and replacing each equivalence class with
respect to ∼ by a single element.

As far as I know, there is no standard term for relations that are irreflexive
and antisymmetric but not necessarily transitive.

9.5.1 Drawing partial orders

Since partial orders are relations, we can draw them as directed graphs. But
for many partial orders, this produces a graph with a lot of edges whose
existence is implied by transitivity, and it can be easier to see what is going
on if we leave the extra edges out. If we go further and line the elements
up so that x is lower than y when x < y, we get a Hasse diagram: a
representation of a partially ordered set as a graph where there is an edge
from x to y if x < y and there is no z such that x < z < y.2

Figure 9.3 gives an example of the divisors of 12 partially ordered by
divisibility, represented both as a digraph and as a Hasse diagram. Even in
this small example, the Hasse diagram is much easier to read.

9.5.2 Comparability

In a partial order, two elements x and y are comparable if x ≤ y or y ≤ x.
Elements that are not comparable are called incomparable. In a Hasse
diagram, comparable elements are connected by a path that only goes up.
For example, in Figure 9.3, 3 and 4 are not comparable because the only
paths between them requiring going both up and down. But 1 and 12 are
both comparable to everything.

2There is special terminology for this situation: such an x is called a predecessor
or sometimes immediate predecessor of y; y in turn is a successor or sometimes
immediate successor of x.

CHAPTER 9. RELATIONS 141

12

4 6

2 3

1

12

4 6

2 3

1

Figure 9.3: Factors of 12 partially ordered by divisibility. On the left is the
full directed graph. On the right is a Hasse diagram, which uses relative
height instead of arrowheads to indicate direction and omits edges implied
by reflexivity and transitivity.

9.5.3 Lattices

A lattice is a partial order in which (a) each pair of elements x and y has a
unique greatest lower bound or meet, written x ∧ y, with the property
that (x∧ y) ≤ x, (x∧ y) ≤ y, and z ≤ (x∧ y) for any z with z ≤ x and z ≤ y;
and (b) each pair of elements x and y has a unique least upper bound or
join, written x ∨ y, with the property that (x ∨ y) ≥ x, (x ∨ y) ≥ y, and
z ≥ (x ∨ y) for any z with z ≥ x and z ≥ y. Meet and join are duals of
each other: the definition of join is obtained from the definition of meet by
replacing ≤ with ≥.

Examples of lattices are any total order (x ∧ y is min(x, y), x ∨ y is
max(x, y)), the subsets of a fixed set ordered by inclusion (x ∧ y is x ∩ y,
x ∨ y is x ∪ y), and the divisibility relation on the positive integers (x ∧ y
is the greatest common divisor, x ∨ y is the least common multiple—see
Chapter 8). Products of lattices with the product order are also lattices:
(x1, x2)∧(y1, y2) = (x1∧1y1, x2∧y2) and (x1, x2)∨(y1, y2) = (x1∨1y1, x2∨y2).3

3The product of two lattices with lexicographic order is not always a lattice. For example,
consider the lex-ordered product of ({0, 1} ,⊆) with (N,≤). For the elements x = ({0} , 0)
and y = ({1} , 0), we have that z is a lower bound on x and y if and only if z is of the form
(∅, k) for some k ∈ N. But there is no greatest lower bound for x and y because given any

CHAPTER 9. RELATIONS 142

a

b c d

e f g h

i j

Figure 9.4: Maximal and minimal elements. In the first poset, a is minimal
and a minimum, while b and c are both maximal but not maximums. In the
second poset, d is maximal and a maximum, while e and f are both minimal
but not minimums. In the third poset, g and h are both minimal, i and j
are both maximal, but there are no minimums or maximums.

9.5.4 Minimal and maximal elements

If for some x, y ≤ x only if y = x, then x is minimal. Equivalently, x is
minimal if there is no y such that y < x.

A partial order may have any number of minimal elements. The integers
have no minimal element, the naturals have one minimal element, and a set
with k elements none of which are comparable to each other has k minimal
elements.

If an element x satisfies x ≤ y for all y, then x is a minimum. A partial
order may have at most one minimum (for example, 0 in the naturals), but
may have no minimum, either because it contains an infinite descending
chain (like the negative integers) or because it has more than one minimal
element. Any minimum is also minimal.

The corresponding terms for elements that are not less than any other
element or that are greater than all other elements are maximal and maxi-
mum, respectively.

Here is an example of the difference between a maximal and a maximum
element: consider the family of all subsets of N with at most three elements,
ordered by ⊆. Then {0, 1, 2} is a maximal element of this family (it’s not a
subset of any larger set), but it’s not a maximum because it’s not a superset
of {3}. (The same thing works for any other three-element set.)

See Figure 9.4 for some more examples.

particular k we can always choose a bigger k′.

CHAPTER 9. RELATIONS 143

9.5.5 Total orders

If any two elements of a partial order are comparable (that is, if at least one
of x ≤ y or y ≤ x holds for all x and y), then the partial order is a total
order. Total orders include many of the familiar orders on the naturals, the
reals, etc.

Any partial order (S,≤) can be extended to a total order (generally
more than one, if the partial order is not total itself). This means that we
construct a new relation ≤′ on S that is a superset of ≤ and also totally
ordered. There is a straightforward way to do this when S is finite, called
a topological sort, and a less straightforward way to do this when S is
infinite.

9.5.5.1 Topological sort

A topological sort is an algorithm for sorting objects that are partially
ordered, in a way that preserves the partial order. (An example is given in
Figure 9.5.) It can be used to construct a schedule for executing a sequence of
operations that depend on each other, and efficient algorithms for topological
sort exist. We won’t bother with efficiency, and will just use the basic idea
to show that a total extension of any finite partial order exists.

The simplest version of this algorithm is to find a minimal element, put
it first, and then sort the rest of the elements; this is similar to selection
sort, an algorithm for doing ordinary sorting, where we find the smallest
element of a set and put it first, find the next smallest element and put it
second, and so on. In order for the selection-based version of topological sort
to work, we have to know that there is, in fact, a minimal element.4

Lemma 9.5.1. Every nonempty finite partially-ordered set has a minimal
element.

Proof. Let (S,≤) be a nonempty finite partially-ordered set. We will prove
that S contains a minimal element by induction on |S|.

If |S| = 1, then S = {x} for some x; x is the minimal element.
If |S| = n ≥ 2, let x be any element of S, and let T = S \ {x}. Then T

is a nonempty set of size n− 1 < n, and so by the induction hypothesis, T
has at least one minimal element y. For this y, there is no z ∈ T such that
z < y.

If y is a minimal element of S, we are done.
4There may be more than one, but one is enough.

CHAPTER 9. RELATIONS 144

12

4 6

2 3

1

12

4

6

2

3

1

Figure 9.5: Topological sort. On the right is a total order extending the
partial order on the left.

CHAPTER 9. RELATIONS 145

If not, there is some element q ∈ S such that q < y. But q can’t be in T ,
so q ∈ S \ T , which makes q = x. So in this case x < y. If x is a minimal
element of S, then we are done.

If x is not a minimal element of S, then there is an r < x in S; since
r 6= x, it is also in T . But then r < x < y implies r < y, contradicting
the assumption that y was minimal. Since this case can’t happen, we are
left with one of the two previous cases, and in both we establish that the
induction hypothesis holds for n.

Now we can apply the selection-sort strategy previously described.

Theorem 9.5.2. Every partial order on a finite set has a total extension.

Proof. Let (S,≤S) be a finite partially-ordered set.
If S is empty, it contains no pair of incomparable elements, so it is already

totally ordered.
For nonempty sets S, we will prove the result by induction on |S|.
If S is nonempty, then by Lemma 9.5.1, it has a minimal element x. Let

T = S \ {x} and let ≤T be the restriction of ≤S to T . Then the induction
hypothesis say that (T,≤T) has a total extension ≤′T . Define ≤′S by y ≤′S z
if y = x or y ≤′T z.

First, let us show that ≤′S extends ≤S . Suppose a ≤S b. There are three
cases:

1. a, b ∈ T . Then a ≤S b→ a ≤T b→ a ≤′T b→ a ≤′S b.

2. a = x. Then x ≤′S b always.

3. b = x. Then a ≤S x→ a = x→ a ≤′S x.

Next, let us show that ≤′S is a partial order. This requires verifying that
adding x to T doesn’t break reflexivity, antisymmetry, or transitivity. For
reflexivity, x ≤ x from the first case of the definition. For antisymmetry, if
y ≤′S x then y = x, since y 6≤′T x for any y. For transitivity, if x ≤′S y ≤′S z
then x ≤′S z (since x ≤′S z for all z in S), and if y ≤′S x ≤′S z then y = x ≤′S z
and if y ≤′S z ≤′S x then y = z = x.

Finally, let’s make sure that we actually get a total order. This means
showing that any y and z in S are comparable. If y 6≤′S z, then y 6= x, and
either z = x or z ∈ T and y 6≤′T z implies z ≤′T y. In either case z ≤′S y. The
case y 6≤′S z is symmetric.

For infinite partial orders the situation is more complicated, because an
infinite partial order might not have any minimal elements (consider (Z,≤)).

CHAPTER 9. RELATIONS 146

But we can still extend any partial order to a total order, even on an infinite
set.

The intuition is that we can always pick some pair of incomparable
elements and declare one less than the other, fill in any other relations
implied by transitivity, and repeat. If we ever reach a partial order where
we can’t do this, that means we have no incomparable elements, so we have
a total order.

Unfortunately this process may take infinitely long, so we have to argue
that it converges in the limit to a genuine total order using a tool called
Zorn’s lemma, which itself is a theorem about partial orders.5

9.5.6 Well orders

A well order is a particularly restricted kind of total order. A partial order
is a well order if it is a total order and every nonempty subset S has a
minimum element x. An example of a well order is the usual order on N.7

5You don’t need to know about Zorn’s Lemma for this course, but if you are curious,
Zorn’s Lemma says that if (S,≤) is any poset, and every totally-ordered subset S′ of S
has an upper bound x, which is an element of S (but not necessarily S′) that is greater
than or equal to any y in S′, then S has a maximal element.

Zorn’s Lemma is one of the reasons we include the Axiom of Choice in our axiom system.
It is known that you can’t prove Zorn’s Lemma from just the other axioms without using
AC, and in the other direction it is possible to prove AC from ZF plus Zorn’s Lemma.
This explains the classic logician’s riddle, “What’s yellow and equivalent to the Axiom of
Choice?”6

Applying Zorn’s Lemma to partial orders, let R be some partial order on a set A, and
let S be the set of all partial orders R′ on A that are supersets of R, ordered by the subset
relation. Now given any chain of partial orders R1 ⊆ R2, . . . in S, their union is also
a partial order (this requires a proof) and any Ri is a subset of the union. So S has a
maximal partial order R̂.

If R̂ is not a total order, then there is some pair of elements x and y that are incomparable.
Let

T = R̂ ∪ {(x, y)} ∪
{

(x, z)
∣∣ (y, z) ∈ R̂

}
∪
{

(w, y)
∣∣ (w, x) ∈ R̂

}
Then T is reflexive (because all the pairs (x, x) are already in R and thus also in R̂) and
transitive (by a tedious case analysis), and antisymmetric (by another tedious case analysis),
meaning that it is a partial order that extends R—and thus an element of S—while also
being a proper superset of R̂. But this contradicts the assumption that R̂ is maximal. So
R̂ is in fact the total order we are looking for.

6Answer: Zorn’s lemon.
7Proof: We can prove that any nonempty S ⊆ N has a minimum in a slightly roundabout

way by induction. The induction hypothesis (for x) is that if S contains some element y
less than or equal to x, then S has a minimum element. The base case is when x = 0; here
x is the minimum. Suppose now that the claim holds for x. Suppose also that S contains
some element y ≤ x+ 1; if not, the induction hypothesis holds vacuously. If there is some

CHAPTER 9. RELATIONS 147

An equivalent definition is that a total order is a well order if it contains
no infinite descending chain, which is an infinite sequence x1 > x2 >
x3 > . . . To show that this is implied by every set having a least element,
suppose that a given total order has the least-element property. Then given a
would-be infinite descending chain x1, x2, . . . , let xi be its least element. But
then xi is not greater than xi+1. For the converse, suppose that some set S
does not have a least element. Then we can construct an infinite descending
chain by choosing any x1 ∈ S, then for each xi+1 choose some element less
than the smallest of x1 . . . xi. Zorn’s Lemma can be used to show that this
process converges to an infinite descending chain in the limit.

The useful property of well-orders is that we can do induction on them.
If it is the case that (a) P (m) holds, where m is the smallest element in some
set S, and (b) P (x′) for all x < x′ implies P (x), then P (x) holds for all x in
S. The proof is that if P (x) doesn’t hold, there is a least element y in S for
which it doesn’t hold (this is the least element in the set {y ∈ S | ¬P (y)},
which exists because S is well ordered). But this contradicts (a) if y = m
and (b) otherwise.

For sets that aren’t well-ordered, this argument generally doesn’t work.
For example, we can’t do induction on the integers because there is no
number negative enough to be the base case, and even if we add a new
minimum element −∞, when we do the induction step we can’t find the
minimum y in the set of integers excluding −∞.

It is possible in an infinite set to have a well-ordering in which some
elements do not have predecessors. For example, consider the order on
S = N ∪ {ω} defined by x ≤ y if either (a) x and y are both in N and x ≤ y
by the usual ordering on N or (b) y = ω. This is a total order that is also
a well order, but ω has no immediate predecessor. In this case we can still
do induction proofs, but since ω is not n + 1 for any n, we need a special
case in the proof to handle it. For a more complicated example, the set
ω + ω = {0, 1, 2, . . . ;ω, ω + 1, ω + 2, . . .} is also well-ordered, so we can do
induction on it if we can show P (0), P (x)→ P (x+ 1) (including for cases
like x = ω + 5 and x + 1 = ω + 6), and P (ω) (possibly using P (x) for all
x < ω in the last case).

y ≤ x, then S has a minimum by the induction hypothesis. The alternative is that there is
no y in S such that y ≤ x, but there is a y in S with y ≤ x+ 1. This y must be equal to
x+ 1, and so y is the minimum.

CHAPTER 9. RELATIONS 148

9.6 Closures
In general, the closure of some mathematical object with respect to a given
property is the smallest larger object that has the property. Usually “smaller”
and “larger” are taken to mean subset or superset, so we are really looking
at the intersection of all larger objects with the property, or equivalently we
are looking for an object that has the property and that is a subset of all
larger objects with the property. Such a closure always exists if the property
is preserved by intersection (formally, if (∀i : P (Si))→ P (

⋂
i Si)) and every

object has at least one larger object with the property.
This rather abstract definition can be made more explicit for certain

kinds of closures of relations. The reflexive closure of a relation R (whose
domain and codomain are equal) is the smallest super-relation of R that is
reflexive; it is obtained by adding (x, x) to R for all x in R’s domain, which
we can write as R0∪R where R0 is just the identity relation on the domain of
R. The symmetric closure is the smallest symmetric super-relation of R;
it is obtained by adding (y, x) to R whenever (x, y) is in R, or equivalently
by taking R ∪R−1. The transitive closure is obtained by adding (x, z) to
R whenever (x, y) and (y, z) are both in R for some y—and continuing to
do so until no new pairs of this form remain.8 The transitive closure can
also be computed as R+ = R1 ∪ R2 ∪ R3 . . . ; for reflexive R, this is equal
to R∗ = R0 ∪ R1 ∪ R2 Even if R is not already reflexive, R∗ gives the
reflexive transitive closure of R.9

In digraph terms, the reflexive closure adds self-loops to all nodes, the
symmetric closure adds a reverse edge for each edge, and the transitive
closure adds an edge for each directed path through the graph (see Figure 9.6.
One can also take the closure with respect to multiple properties, such
as the reflexive symmetric transitive closure of R, which will be the
smallest equivalence relation in which any elements that are related by R
are equivalent.

Closures provide a way of turning things that aren’t already equivalence
relations or partial orders into equivalence relations and partial orders. For
equivalence relations this is easy: take the reflexive symmetric transitive
closure, and you get a reflexive symmetric transitive relation. For partial
orders it’s trickier: antisymmetry isn’t a closure property (even though
it’s preserved by intersection, a non-antisymmetric R can’t be made anti-
symmetric by adding more pairs). Given a relation R on some set S, the

8This may not actually terminate if R’s domain is not finite.
9All of this can be proved by doing lots of induction.

CHAPTER 9. RELATIONS 149

0 1 2

0 1 2

0 1 2

0 1 2

Figure 9.6: Reflexive, symmetric, and transitive closures of a relation rep-
resented as a directed graph. The original relation {(0, 1), (1, 2)} is on top;
the reflexive, symmetric, and transitive closures are depicted below it.

CHAPTER 9. RELATIONS 150

1

2

3

4

5

6 123

4

56

Figure 9.7: Reducing a graph to its strongly-connected components. On the
left is the original graph. On the right, each strongly-connected component
has been contracted to a single vertex. The contracted graph is acyclic.

best we can do is take the reflexive transitive closure R∗ and hope that it’s
antisymmetric. If it is, we are done. If it isn’t, we can observe that the
relation ∼ defined by x ∼ y if xR∗y and yR∗x is an equivalence relation
(Proof: x ∼ x because R∗ is reflexive, x ∼ y → y ∼ x from the symmetry of
the definition, and x ∼ y ∧ y ∼ z → x ∼ z because transitivity of R∗ gives
xR∗y∧yR∗z → xR∗z and yR∗x∧zR∗y → zR∗x). So we can take the quotient
S/∼, which smashes all the equivalence classes of ∼ into single points, define
a quotient relation R∗/∼ in the obvious way, and this quotient relation will
be a partial order. This is the relational equivalent of the standard graph-
theoretic algorithm that computes strongly-connected components (the
equivalence classes of ∼) and constructs a directed acyclic graph from
the original by contracting each strongly-connected component to a single
vertex. See Figure 9.7 for an example.

9.6.1 Examples

• Let R be the relation on subsets of N given by xRy if there exists some
n 6∈ x such that y = x ∪ {n}. The transitive closure of R is the proper
subset relation ⊂, where x ⊂ y if x ⊆ y but x 6= y. The reflexive
transitive closure R∗ of R is just the ordinary subset relation ⊆. The
reflexive symmetric transitive closure of R is the complete relation;
given any two sets x and y, we can get from x to ∅ via (R∗)−1 and
then to y via R∗. So in this case the reflexive symmetric transitive
closure is not very interesting.

• Let R be the relation on N given by xRy if x = 2y. Then the reflexive
transitive closure R∗ is the relation given by xR∗y if x = 2ny for some
n ∈ N, and the reflexive symmetric transitive closure is the relation

CHAPTER 9. RELATIONS 151

given by x ∼ y if x = 2ny or y = 2nx for some n ∈ N. For this R,
not all elements of the underlying set are equivalent in the reflexive
symmetric transitive closure; for example, 3 6∼ 5, because there is no
way to transform a 3 into a 5 no matter how many times we multiply
or divide by 2.

Chapter 10

Graphs

A graph is a structure in which pairs of vertices are connected by edges.
Each edge may act like an ordered pair (in a directed graph) or an un-
ordered pair (in an undirected graph). We’ve already seen directed graphs
as a representation for relations. Most work in graph theory concentrates
instead on undirected graphs.

Because graph theory has been studied for many centuries in many
languages, it has accumulated a bewildering variety of terminology, with
multiple terms for the same concept (e.g. node for vertex or arc for edge) and
ambiguous definitions of certain terms (e.g., a “graph” without qualification
might be either a directed or undirected graph, depending on who is using the
term: graph theorists tend to mean undirected graphs, but you can’t always
tell without looking at the context). We will try to stick with consistent
terminology to the extent that we can. In particular, unless otherwise
specified, a graph will refer to a finite simple undirected graph: an
undirected graph with a finite number of vertices, where each edge connects
two distinct vertices (thus no self-loops) and there is at most one edge
between each pair of vertices (no parallel edges).

A reasonably complete glossary of graph theory can be found at at
http://en.wikipedia.org/wiki/Glossary_of_graph_theory. See also
Ferland [Fer08], Chapters 8 and 9; Rosen [Ros12] Chapter 10; or Biggs [Big02]
Chapter 15 (for undirected graphs) and 18 (for directed graphs).

If you want to get a fuller sense of the scope of graph theory, Reinhard
Diestel’s (graduate) textbook Graph Theory[Die10] can be downloaded from
http://diestel-graph-theory.com.

152

http://en.wikipedia.org/wiki/Glossary_of_graph_theory
http://diestel-graph-theory.com

CHAPTER 10. GRAPHS 153

Figure 10.1: A directed graph

10.1 Types of graphs
Graphs are represented as ordered pairs G = (V,E), where V is a set of
vertices and E a set of edges. The differences between different types of
graphs depends on what can go in E. When not otherwise specified, we
usually think of a graph as an undirected graph (see below), but there are
other variants. Typically we assume that V and E are both finite.

10.1.1 Directed graphs

In a directed graph or digraph, each element of E is an ordered pair, and
we think of edges as arrows from a source, head, or initial vertex to
a sink, tail, or terminal vertex; each of these two vertices is called an
endpoint of the edge. A directed graph is simple if there is at most one
edge from one vertex to another. A directed graph that has multiple edges
from some vertex u to some other vertex v is called a directed multigraph.

For simple directed graphs, we can save a lot of ink by adopting the
convention of writing an edge (u, v) from u to v as just uv.

Directed graphs are drawn as in Figure 10.1.
As we saw in the notes on relations, there is a one-to-one correspondence

between simple directed graphs with vertex set V and relations on V .

10.1.2 Undirected graphs

In an undirected graph, each edge is an undirected pair, which we can
represent as subset of V with one or two elements. A simple undirected
graph contains no duplicate edges and no loops (an edge from some vertex
u back to itself); this means we can represent all edges as two-element subsets
of V . Most of the time, when we say graph, we mean a simple undirected
graph. Though it is possible to consider infinite graphs, for convenience we
will limit ourselves to finite graphs, where n = |V | and m = |E| are both
natural numbers.

CHAPTER 10. GRAPHS 154

Figure 10.2: A graph

As with directed graphs, instead of writing an edge as {u, v}, we will
write an edge between u and v as just uv. Note that in an undirected graph,
uv and vu are the same edge.

Graphs are drawn just like directed graphs, except that the edges don’t
have arrowheads on them. See Figure 10.2 for an example.

If we have loops or parallel edges, we have a more complicated structure
called a multigraph. This requires a different representation where elements
of E are abstract edges and we have a function mapping each element of
E to its endpoints. Some authors make a distinction between pseudographs
(with loops) and multigraphs (without loops), but we’ll use multigraph for
both.

Simple undirected graphs also correspond to relations, with the restriction
that the relation must be irreflexive (no loops) and symmetric (undirected
edges). This also gives a representation of undirected graphs as directed
graphs, where the edges of the directed graph always appear in pairs going
in opposite directions.

10.1.3 Hypergraphs

In a hypergraph, the edges (called hyperedges) are arbitrary nonempty
sets of vertices. A k-hypergraph is one in which all such hyperedges
connected exactly k vertices; an ordinary graph is thus a 2-hypergraph.

Hypergraphs can be drawn by representing each hyperedge as a closed
curve containing its members, as in the left-hand side of Figure 10.3.

Hypergraphs aren’t used very much, because it is always possible (though
not always convenient) to represent a hypergraph by a bipartite graph. In
a bipartite graph, the vertex set can be partitioned into two subsets S and T ,
such that every edge connects a vertex in S with a vertex in T . To represent
a hypergraph H as a bipartite graph, we simply represent the vertices of H
as vertices in S and the hyperedges of H as vertices in T , and put in an edge
(s, t) whenever s is a member of the hyperedge t in H. The right-hand side
of Figure 10.3 gives an example.

CHAPTER 10. GRAPHS 155

1 2

3 4

1

2

3

4

Figure 10.3: Two representations of a hypergraph. On the left, four vertices
are connected by three hyperedges. On the right, the same four vertices are
connected by ordinary edges to new vertices representing the hyperedges.

10.2 Examples of graphs
Any relation produces a graph, which is directed for an arbitrary relation
and undirected for a symmetric relation. Examples are graphs of parenthood
(directed), siblinghood (undirected), handshakes (undirected), etc.

Graphs often arise in transportation and communication networks. Here’s
a (now very out-of-date) route map for Jet Blue airlines, originally taken
from http://www.jetblue.com/travelinfo/routemap.html:

Such graphs are often labeled with edge lengths, prices, etc. In computer
networking, the design of network graphs that permit efficient routing of data
without congestion, roundabout paths, or excessively large routing tables is

http://www.jetblue.com/travelinfo/routemap.html

CHAPTER 10. GRAPHS 156

a central problem.
The web graph is a directed multigraph with web pages for vertices

and hyperlinks for edges. Though it changes constantly, its properties have
been fanatically studied both by academic graph theorists and employees
of search engine companies, many of which are still in business. Companies
like Google base their search rankings largely on structural properties of the
web graph.

Peer-to-peer systems for data sharing often have a graph structure,
where each peer is a node and connections between peers are edges. The
problem of designing efficient peer-to-peer systems is similar in many ways
to the problem of designing efficient networks; in both cases, the structure
(or lack thereof) of the underlying graph strongly affects efficiency.

10.3 Local structure of graphs
There are some useful standard terms for describing the immediate connec-
tions of vertices and edges:

• Incidence: a vertex is incident to any edge of which it is an endpoint
(and vice versa).

• Adjacency, neighborhood: two vertices are adjacent if they are the
endpoints of some edge. The neighborhood of a vertex v is the set
of all vertices that are adjacent to v.

• Degree, in-degree, out-degree: the degree of v counts the number edges
incident to v. In a directed graph, in-degree counts only incoming
edges and out-degree counts only outgoing edges (so that the degree
is always the in-degree plus the out-degree). The degree of a vertex
v is often abbreviated as d(v); in-degree and out-degree are similarly
abbreviated as d−(v) and d+(v), respectively.

10.4 Some standard graphs
Most graphs have no particular structure, but there are some families of
graphs for which it is convenient to have standard names. Some examples
are:

• Complete graph Kn. This has n vertices, and every pair of vertices
has an edge between them. See Figure 10.4.

CHAPTER 10. GRAPHS 157

K1 K2 K3 K4

K5 K6 K7

K8 K9 K10

Figure 10.4: Complete graphs K1 through K10

CHAPTER 10. GRAPHS 158

C3 C4 C5

C6 C7 C8

C9 C10 C11

Figure 10.5: Cycle graphs C3 through C11

• Cycle graph Cn. This has vertices {0, 1, . . . n− 1} and an edge from i
to i+ 1 for each i, plus an edge from n− 1 to 0. For any cycle, n must
be at least 3. See Figure 10.5.

• Path Pn. This has vertices {0, 1, 2, . . . n} and an edge from i to i+ 1
for each i. Note that, despite the usual convention, n counts the number
of edges rather than the number of vertices; we call the number of
edges the length of the path. See Figure 10.6.

• Complete bipartite graph Km,n. This has a set A of m vertices
and a set B of n vertices, with an edge between every vertex in A and
every vertex in B, but no edges within A or B. See Figure 10.7.

CHAPTER 10. GRAPHS 159

P0 P1 P2 P3 P4

Figure 10.6: Path graphs P0 through P4

K3,4

Figure 10.7: Complete bipartite graph K3,4

• Star graphs. These have a single central vertex that is connected to
n outer vertices, and are the same as K1,n. See Figure 10.8.

• The cube Qn. This is defined by letting the vertex set consist of all
n-bit strings, and putting an edge between u and u′ if u and u′ differ
in exactly one place. It can also be defined by taking the n-fold square
product of an edge with itself (see §10.6).

• Cayley graphs. The Cayley graph of a group G with a given set of
generators S is a labeled directed graph. The vertices of this graph are
the group elements, and for each element g in G and generator s in S
there is a directed edge from g to gs labeled with s. An example of a
small Cayley graph, based on the dihedral group D4 of symmetries
of the square, is given in Figure 10.9.
Many common graphs are Cayley graphs with the labels (and possibly
edge orientations) removed; for example, a directed cycle onm elements
is the Cayley graph of Zm with generator 1, an n × m torus is the
Cayley graph of Zn × Zm with generators (1, 0) and (0, 1), and the
cube Qn is the Cayley graph of (Z2)n with generators all vectors that
are zero in all positions but one.

Graphs may not always be drawn in a way that makes their structure
obvious. For example, Figure 10.10 shows two different presentations of Q3,
neither of which looks much like the other.

CHAPTER 10. GRAPHS 160

K1,3 K1,4 K1,5

K1,6 K1,7 K1,8

Figure 10.8: star graphs K1,3 through K1,8

1 2
4 3

4 1
3 2

3 4
2 1

2 3
1 4

2 1
3 4

1 4
2 3

4 3
1 2

3 2
4 1

Figure 10.9: Cayley graph of the dihedral group D4, with generators a
corresponding to a clockwise rotation (red arrows) and b corresponding to a
flip around the vertical axis (blue arrows). Note that this is a directed graph.

CHAPTER 10. GRAPHS 161

0 1

4 5

6 7

2 3

0 1

2 3
4 5

6 7

Figure 10.10: Two presentations of the cube graph Q3

10.5 Subgraphs and minors
A graph G is a subgraph of of a graph H, written G ⊆ H, if VG ⊆ VH and
EG ⊆ EH . We will also sometimes say that G is a subgraph of H if it is
isomorphic to a subgraph of H, which is equivalent to having an injective
homomorphism from G to H.

One can get a subgraph by deleting edges or vertices or both. Note that
deleting a vertex also requires deleting any edges incident to the vertex (since
we can’t have an edge with a missing endpoint). If we delete as few edges as
possible, we get an induced subgraph. Formally, the subgraph of a graph
H whose vertex set is S and that contains every edge in H with endpoints
in S is called the subgraph of H induced by S.

A minor of a graph H is a graph obtained from H by deleting edges
and/or vertices (as in a subgraph) and contracting edges, where two ad-
jacent vertices u and v are merged together into a single vertex that is
adjacent to all of the previous neighbors of both vertices. Minors are useful
for recognizing certain classes of graphs. For example, a graph can be drawn
in the plane without any crossing edges if and only if it doesn’t contain K5
or K3,3 as a minor (this is known as Wagner’s theorem).

Figure 10.11 shows some subgraphs and minors of the graph from Fig-
ure 10.2.

CHAPTER 10. GRAPHS 162

1

2

3

4

5

6 1

2 4

5

1

2

3

1

2

3

45

Figure 10.11: Examples of subgraphs and minors. Top left is the original
graph. Top right is a subgraph that is not an induced subgraph. Bottom
left is an induced subgraph. Bottom right is a minor.

10.6 Graph products
There are at least five different definitions of the product of two graphs used
by serious graph theorists. In each case the vertex set of the product is the
Cartesian product of the vertex sets, but the different definitions throw in
different sets of edges. Two of them are used most often:

• The square product or graph Cartesian product G�H. An edge
(u, u′)(v, v′) is in G�H if and only if (a) u = v and u′v′ is an edge in
H, or (b) uv is an edge in G and v = v′. It’s called the square product
because the product of two (undirected) edges looks like a square. The
intuition is that each vertex in G is replaced by a copy of H, and then
corresponding vertices in the different copies of H are linked whenever
the original vertices in G are adjacent. For algebraists, square products
are popular because they behave correctly for Cayley graphs: if C1
and C2 are the Cayley graphs of G1 and G2 (for particular choices of
generators), then C1 � C2 is the Cayley graph of G1 ×G2.

– The cube Qn can be defined recursively by Q1 = P1 and Qn =
Qn−1 �Q1. It is also the case that Qn = Qk �Qn−k.

– An n-by-m mesh is given by Pn−1 � Pm−1.

CHAPTER 10. GRAPHS 163

• The cross product or categorical graph product G × H. Now
(u, u′)(v, v′) is in G×H if and only if uv is in G and u′v′ is in H. In the
cross product, the product of two (again undirected) edges is a cross:
an edge from (u, u′) to (v, v′) and one from (u, v′) to (v, u′). The cross
product is not as useful as the square product for defining nice-looking
graphs, but it can arise in some other situations. An example is when
G and H describe the positions (vertices) and moves (directed edges)
of two solitaire games; then the cross product G × H describes the
combined game in which at each step the player must make a move in
both games. (In contrast, the square product G�H describes a game
where the player can choose at each step to make a move in either
game.)

10.7 Functions between graphs
A function from a graph G to another graph H typically maps VG to VH ,
with the edges coming along for the ride. For simplicity, we will generally
write f : G→ H when we really mean f : VG → VH .

A function f : G → H is a graph homomorphism if, for every edge
uv in G, f(u)f(v) is an edge in H. Note that this only goes one way: it is
possible to have an edge f(u)f(v) in H but no edge uv in G. Generally we
will only be interested in functions between graphs that are homomorphisms,
and even among homomorphisms, some functions are more interesting than
others.

A graph homomorphism that has an inverse that is also a graph ho-
momorphism is called an graph isomorphism. Two graphs G and H are
isomorphic if there is an isomorphism between them. Intuitively, this
means that G and H are basically the same graph, with different names
for the vertices, and we will often treat them as the same graph. So, for
example, we will think of a graph G = (V,E) where V = {1, 3, 5} and
E = {{1, 3} , {3, 5} , {1, 5}} as an instance of C3 and K3 even if the vertex
labels are not what we might have chosen by default. To avoid confusion
with set equality, we write G ∼= H when G and H are isomorphic.

Every graph is isomorphic to itself, because the identity function is an
isomorphism. But some graphs have additional isomorphisms. An isomor-
phism from G to G is called an automorphism of G and corresponds to
an internal symmetry of G. For example, the cycle Cn has 2n different
automorphisms (to count them, observe there are n places we can send
vertex 0 to, and having picked a place to send vertex 0 to, there are only 2

CHAPTER 10. GRAPHS 164

places to send vertex 1; so we have essentially n rotations times 2 for flipping
or not flipping the graph). A path Pn (when n > 1) has 2 automorphisms
(reverse the direction or not). Many graphs have no automorphisms except
the identity map.

An injective homomorphism from G to H is an isormophism between G
and some subgraph H ′ of H. In this case, we often say that G is a subgraph
of H, even though technically it is just a copy of G that appears as a subgraph
of H. This allows us to say, for example, that Pn is a subgraph of Pn+1,1 or
all graphs on at most n vertices are subgraphs of Kn.

Homomorphisms that are not injective are not as useful, but they can
can sometimes be used to characterize particular classes of graphs indirectly.
For example, There is a homomorphism from a graph G to P1 if and only if
G is bipartite (see §C.7.2 for a proof). In general, there is a homomorphism
from G to Kn if and only if G is n-partite (recall P1 ∼= K2).

10.8 Paths and connectivity
A fundamental property of graphs is connectivity: whether the graph can
be divided into two or more pieces with no edges between them. Often it
makes sense to talk about this in terms of reachability, or whether you can
get from one vertex to another along some path.

The pedantic definition of a path path of length n in a graph is the
image of a homomorphism from Pn. In ordinary speech, it’s a sequence
of n + 1 vertices v0, v1, . . . , vn such that vivi+1 is an edge in the graph for
each i. A path is simple if the same vertex never appears twice (i.e. if the
homomorphism is injective). If there is a path from u to v, there is a simple
path from u to v obtained by removing cycles (Lemma 10.10.1).

If there is a path from u to v, then v is reachable from u: u ∗→ v. We
also say that u is connected to v. It’s easy to see that connectivity is
reflexive (take a path of length 0) and transitive (paste a path from u to v
together with a path from v to w to get a path from u to w). But it’s not
necessarily symmetric if we have a directed graph.

In an undirected graph, connectivity is symmetric, so it’s an equivalence
relation. The equivalence classes of ∗→ are called the connected compo-
nents of G, and G itself is connected if and only if it has a single connected
component, i.e., if every vertex is reachable from every other vertex. (Note
that isolated vertices count as (separate) connected components.)

1In four different ways!

CHAPTER 10. GRAPHS 165

In a directed graph, we can make connectivity symmetric in one of two
different ways:

• Define u to be strongly connected to v if u ∗→ v and v ∗→ u. I.e., u
and v are strongly connected if you can go from u to v and back again
(not necessarily through the same vertices).
It’s easy to see that strong connectivity is an equivalence relation.
The equivalence classes are called strongly-connected components.
A graph G is strongly connected if it has one strongly-connected
component, i.e., if every vertex is reachable from every other vertex.

• Define u to be weakly connected to v if u ∗→ v in the undirected
graph obtained by ignoring edge orientation. The intuition is that
u is weakly connected to v if there is a path from u to v if you are
allowed to cross edges backwards. Weakly-connected components are
defined by equivalence classes; a graph is weakly-connected if it has
one component. Weak connectivity is a “weaker” property that strong
connectivity in the sense that if u is strongly connected to v, then u is
weakly connected to v; but the converse does not necessarily hold.

The k-th power Gk of a graph G has the same vertices as G, but uv is
an edge in Gk if and only if there is a path of length k from u to v in G.
The transitive closure of a directed graph: G∗ =

⋃∞
k=0G

k. I.e., there is
an edge uv in G∗ if and only if there is a path (of any length, including zero)
from u to v in G, or in other words if u ∗→ v. This is equivalent to taking
the transitive closure of the adjacency relation.

10.9 Cycles
The standard cycle graph Cn has vertices {0, 1, . . . , n− 1} with an edge from
i to i+ 1 for each i and from n− 1 to 0. To avoid degeneracies, n must be
at least 3. A simple cycle of length n in a graph G is an embedding of Cn
in G: this means a sequence of distinct vertices v0v1v2 . . . vn−1, where each
pair vivi+1 is an edge in G, as well as vn−1v0. If we omit the requirement
that the vertices are distinct, but insist on distinct edges instead, we have a
cycle. If we omit both requirements, we get a closed walk; this includes
very non-cyclic-looking walks like the short excursion uvu. We will mostly
worry about cycles.2 See Figure 10.12

2Some authors reserve cycle for what we are calling a simple cycle, and use circuit for
cycle.

CHAPTER 10. GRAPHS 166

1

2

3

4

5

6 1

2

3 5

1

2

3

4

5

1

2

3

4

5

6

Figure 10.12: Examples of cycles and closed walks. Top left is a graph. Top
right shows the simple cycle 1253 found in this graph. Bottom left shows
the cycle 124523, which is not simple. Bottom right shows the closed walk
12546523, which uses the 25 edge twice.

Unlike paths, which have endpoints, no vertex in a cycle has a special
role.

A graph with no cycles is acyclic. Directed acyclic graphs or DAGs
have the property that their reachability relation ∗→ is a partial order; this
is easily proven by showing that if ∗→ is not anti-symmetric, then there is a
cycle consisting of the paths between two non-anti-symmetric vertices u ∗→ v
and v

∗→ u. Directed acyclic graphs may also be topologically sorted:
their vertices ordered as v0, v1, . . . , vn−1, so that if there is an edge from
vi to vj , then i < j. The proof is by induction on |V |, with the induction
step setting vn−1 to equal some vertex with out-degree 0 and ordering the
remaining vertices recursively. (See §9.5.5.1.)

Connected acyclic undirected graphs are called trees. A connected graph
G = (V,E) is a tree if and only if |E| = |V | − 1; we’ll prove this and other
characterizations of tree in §10.10.3.

A cycle that includes every edge exactly once is called an Eulerian cycle
or Eulerian tour, after Leonhard Euler, whose study of the Seven bridges
of Königsberg problem led to the development of graph theory. A cycle
that includes every vertex exactly once is called a Hamiltonian cycle or

CHAPTER 10. GRAPHS 167

Hamiltonian tour, after William Rowan Hamilton, another historical graph-
theory heavyweight (although he is more famous for inventing quaternions and
the Hamiltonian). Graphs with Eulerian cycles have a simple characterization:
a graph has an Eulerian cycle if and only if every vertex has even degree.
Graphs with Hamiltonian cycles are harder to recognize.

10.10 Proving things about graphs
Suppose we want to show that all graphs or perhaps all graphs satisfying
certain criteria have some property. How do we do this? In the ideal case,
we can decompose the graph into pieces somehow and use induction on the
number of vertices or the number of edges. If this doesn’t work, we may
have to look for some properties of the graph we can exploit to construct an
explicit proof of what we want.

10.10.1 Paths and simple paths

If all we care about is connectivity, we can avoid making distinctions between
paths and simple paths.

Lemma 10.10.1. If there is a path from s to t in G, there is a simple path
from s to t in G.

Proof. By induction on the length of the path. Specifically, we will show
that if there is a path from s to t of length k, there is a simple path from s
to t.

The base case is when k = 1; then the path consists of exactly one edge
and is simple.

For larger k, let s = v0 . . . vk = t be a path in G. If this path is simple, we
are done. Otherwise, there exist positions i < j such that vi = vj . Construct
a new path v1 . . . vivj+1 . . . vk; this is an s–t path of length less than k, so by
the induction hypothesis a simple s–t path exists.

The converse of this lemma is trivial: any simple path is also a path.
Essentially the same argument works for cycles:

Lemma 10.10.2. If there is a cycle in G, there is a simple cycle in G.

Proof. As in the previous lemma, we prove that there exists a simple cycle
if there is a cycle of length k for any k, by induction on k. First observe
that the smallest possible cycle has length 3, since anything shorter either
doesn’t get back to its starting point or violates the no-duplicate edges

CHAPTER 10. GRAPHS 168

requirement. So the base case is k = 3, and it’s easy to see that all 3-cycles
are simple. For larger k, if v0v1 . . . vk−1 is a k-cycle that is not simple, there
exist i < j with vi = vj ; patch the edges between them out to get a smaller
cycle v0 . . . vivj+1 . . . vk−1. The induction hypothesis does the rest of the
work.

10.10.2 The Handshaking Lemma

This lemma relates the total degree of a graph to the number of edges. The
intuition is that each edge adds one to the degree of both of its endpoints,
so the total degree of all vertices is twice the number of edges.

Lemma 10.10.3. For any graph G = (V,E),∑
v∈V

d(v) = 2|E|.

Proof. By induction on m = |E|. If m = 0, G has no edges, and
∑
v∈V d(v) =∑

v∈V 0 = 0 = 2m. If m > 0, choose some edge st and let G′ = G− st be the
subgraph of G obtained by removing st. Applying the induction hypothesis
to G′,

2(m− 1) =
∑
v∈V

dG′(v)

=
∑

v∈V \{s,t}
dG′(v) + dG′(s) + dG′(t)

=
∑

v∈V \{s,t}
dG(v) + (dG(s)− 1) + (dG(t)− 1)

=
∑
v∈V

dG(v)− 2.

So
∑
v∈V dG(v)− 2 = 2m− 2, giving

∑
v∈V dG(v) = 2m.

One application of the lemma is that the number of odd-degree vertices
in a graph is always even (take both sides mod 2). Another, that we’ll
use below, is that if a graph has very few edges, then it must have some
low-degree vertices.

10.10.3 Characterizations of trees

A tree is defined to be an acyclic connected graph. There are several
equivalent characterizations.

CHAPTER 10. GRAPHS 169

Theorem 10.10.4. A graph is a tree if and only if there is exactly one
simple path between any two distinct vertices.

Proof. A graph G is connected if and only if there is at least one simple path
between any two distinct vertices. We’ll show that it is acyclic if and only if
there is at most one simple path between any two distinct vertices.

First, suppose that G has two distinct simple paths u = v1v2 . . . vk = v
and u = v′1v

′
2 . . . v

′
` = v. Let i be the largest index for which vi = v′i; under

the assumption that the paths are distinct and simple , we have i < min(k, `).
Let j > i be the smallest index for which vj = v′m for some m > i; we
know that some such j exists because, if nothing else, vk = v`. Let m is the
smallest such m.

Now construct a cycle vivi+1 . . . vjv
′
m−1v

′
m−2 . . . v

′
i = vi. This is in fact a

simple cycle, since the vr are all distinct, the v′s are all distinct, and if any
vr with i < r < j equals v′s with i < s < m, then j or m is not minimal. It
follows that if G has two distinct simple paths between the same vertices, it
contains a simple cycle, and is not acyclic.

Conversely, suppose that G is not acyclic, and let v1v2 . . . vk = v1 be a
simple cycle in G. Then v1v2 and v2 . . . vk are both simple paths between
v1 and v2, one of which contains v3 and one of which doesn’t. So if G is
not acyclic, it contains more than one simple path between some pair of
vertices.

An alternative characterization counts the number of edges: we will show
that any graph with less than |V | − 1 edges is disconnected, and any graph
with more than |V | − 1 edges is cyclic. With exactly |V | − 1 edges, we will
show that a graph is connected if and only if it is acyclic.

The main trick involves reducing a |V | by removing a degree-1 vertex.
The following lemma shows that this does not change whether or not the
graph is connected or acyclic:

Lemma 10.10.5. Let G be a nonempty graph, and let v be a vertex of G
with d(v) = 1. Let G− v be the induced subgraph of G obtained by deleting v
and its unique incident edge. Then

1. G is connected if and only if G− v is connected.

2. G is acyclic if and only if G− v is acyclic.

Proof. Let w be v’s unique neighbor.
If G is connected, for any two vertices s and t, there is a simple s–t path.

If neither s nor t is v, this path can’t include v, because w would appear

CHAPTER 10. GRAPHS 170

both before and after v in the path, violating simplicity. So for any s, t in
G− v, there is an s–t path in G− v, and G− v is connected.

Conversely, if G − v is connected, then any s and t not equal to v
remain connected after adding vw, and if s = v, for any t there is a path
w = v1 . . . vk = t, from which we can construct a path vv1 . . . vk = t from v
to t. The case t = v is symmetric.

If G contains a cycle, then it contains a simple cycle; this cycle can’t
include v, so G− v also contains the cycle.

Conversely, if G− v contains a cycle, this cycle is also in G.

Because a graph with two vertices and fewer than one edges is not
connected, Lemma 10.10.5 implies that any graph with fewer than |V | − 1
edges is not connected.

Corollary 10.10.6. Let G = (V,E). If |E| < |V | − 1, G is not connected.

Proof. By induction on n = |V |.
For the base case, if n = 0, then |E| = 0 6< n− 1.
For larger n, suppose that n ≥ 1 and |E| < n− 1. From Lemma 10.10.3

we have
∑
v d(v) < 2n− 2, from which it follows that there must be at least

one vertex v with d(v) < 2. If d(v) = 0, then G is not connected. If d(v) = 1,
then G is connected if and only if G− v is connected. But G− v has n− 1
vertices and |E| − 1 < n− 2 edges, so by the induction hypothesis, G− v is
not connected. So in either case, |E| < n− 1 implies G is not connected.

In the other direction, combining the lemma with the fact that the unique
graph K3 with three vertices and at least three edges is cyclic tells us that
any graph with at least as many edges as vertices is cyclic.

Corollary 10.10.7. Let G = (V,E). If |E| > |V | − 1, G contains a cycle.

Proof. By induction on n = |V |.
For n ≤ 2, |E| 6> |V − 1|, so the claim holds vacuously.3
For larger n, there are two cases:

1. Some vertex v has degree d(v) ≤ 1. Let G′ = (V ′, E′) = G− v. Then
|E′| ≥ |E| − 1 > |V | − 2 = |V ′| − 1, and by the induction hypothesis
G′ contains a cycle. This cycle is also in G.

2. Every vertex v in G has d(v) ≥ 2. Let’s go for a walk: starting at
some vertex v0, choose at each step a vertex vi+1 adjacent to vi that

3In fact, no graph with |V | ≤ 2 contains a cycle, but we don’t need to use this.

CHAPTER 10. GRAPHS 171

does not already appear in the walk. This process finishes when we
reach a node vk all of whose neighbors appear in the walk in a previous
position. One of these neighbors may be vk−1; but since d(vk) ≥ 2,
there is another neighbor vj 6= vk−1. So vj . . . vkvj forms a cycle.

Now we can prove the full result:

Theorem 10.10.8. Let G = (V,E) be a nonempty graph. Then any two of
the following statements implies the third:

1. G is connected.

2. G is acyclic.

3. |E| = |V | − 1.

Proof. We will use induction on n for some parts of the proof. The base case
is when n = 1; then all three statements hold always. For larger n, we show:

• (1) and (2) imply (3): Use Corollary 10.10.6 and Corollary 10.10.7.

• (1) and (3) imply (2). From Lemma 10.10.3,
∑
v∈V d(v) = 2(n−1) < 2n.

It follows that there is at least one v with d(v) ≤ 1. Because G is
connected, we must have d(v) = 1. So G′ = G− v is a graph with n− 2
edges and n− 1 vertices. It is connected by Lemma 10.10.5, and thus
it is acyclic by the induction hypothesis. Applying the other case of
Lemma 10.10.5 in the other direction shows G is also acyclic.

• (2) and (3) imply (1). As in the previous case, G contains a vertex
v with d(v) ≤ 1. If d(v) = 1, then G − v is a nonempty graph with
n − 2 edges and n − 1 vertices that is acyclic by Lemma 10.10.5. It
is thus connected by the induction hypothesis, so G is also connected
by Lemma 10.10.5. If d(v) = 0, then G− v has n− 1 edges and n− 1
vertices. From Corollary 10.10.7, G− v contains a cycle, contradicting
(2).

For an alternative proof based on removing edges, see [Big02, Theorem
15.5]. This also gives the useful fact that removing one edge from a tree gives
exactly two components.

CHAPTER 10. GRAPHS 172

10.10.4 Spanning trees

Here’s another induction proof on graphs. A spanning tree of a nonempty
connected graph G is a subgraph of G that includes all vertices and is a tree
(i.e., is connected and acyclic).

Theorem 10.10.9. Every nonempty connected graph has a spanning tree.

Proof. Let G = (V,E) be a nonempty connected graph. We’ll show by
induction on |E| that G has a spanning tree. The base case is |E| = |V | − 1
(the least value for which G can be connected); then G itself is a tree (by the
theorem above). For larger |E|, the same theorem gives that G contains a
cycle. Let uv be any edge on the cycle, and consider the graph G− uv; this
graph is connected (since we can route any path that used to go through uv
around the other edges of the cycle) and has fewer edges than G, so by the
induction hypothesis there is some spanning tree T of G− uv. But then T
also spans G, so we are done.

10.10.5 Eulerian cycles

Let’s prove the vertex degree characterization of graphs with Eulerian cycles.
As in the previous proofs, we’ll take the approach of looking for something
to pull out of the graph to get a smaller case.

Theorem 10.10.10. Let G be a connected graph. Then G has an Eulerian
cycle if and only if all nodes have even degree.

Proof. • (Only if part). Fix some cycle, and orient the edges by the
direction that the cycle traverses them. Then in the resulting directed
graph we must have d−(u) = d+(u) for all u, since every time we enter
a vertex we have to leave it again. But then d(u) = 2d+(u) is even.

• (If part, sketch of proof). Suppose now that d(u) is even for all u. We
will construct an Eulerian cycle on all nodes by induction on |E|. The
base case is when |E| = 2|V | and G = C|V |. For a larger graph, choose
some starting node u1, and construct a path u1u2 . . . by choosing
an arbitrary unused edge leaving each ui; this is always possible for
ui 6= u1 since whenever we reach ui we have always consumed an even
number of edges on previous visits plus one to get to it this time,
leaving at least one remaining edge to leave on. Since there are only
finitely many edges and we can only use each one once, eventually we
must get stuck, and this must occur with uk = u1 for some k. Now

CHAPTER 10. GRAPHS 173

delete all the edges in u1 . . . uk from G, and consider the connected
components of G− (u1 . . . uk). Removing the cycle reduces d(v) by an
even number, so within each such connected component the degree
of all vertices is even. It follows from the induction hypothesis that
each connected component has an Eulerian cycle. We’ll now string
these per-component cycles together using our original cycle: while
traversing u1 . . . , uk when we encounter some component for the first
time, we take a detour around the component’s cycle. The resulting
merged cycle gives an Eulerian cycle for the entire graph.

Why doesn’t this work for Hamiltonian cycles? The problem is that in a
Hamiltonian cycle we have too many choices: out of the d(u) edges incident
to u, we will only use two of them. If we pick the wrong two early on, this
may prevent us from ever fitting u into a Hamiltonian cycle. So we would
need some stronger property of our graph to get Hamiltonicity.

Chapter 11

Counting

Counting is the process of creating a bijection between a set we want to
count and some set whose size we already know. Typically this second set
will be a finite ordinal [n] = {0, 1, . . . , n− 1}.1

Counting a set A using a bijection f : A → [n] gives its size |A| = n;
this size is called the cardinality of n. As a side effect, it also gives a
well-ordering of A, since [n] is well-ordered as we can define x ≤ y for x, y in
A by x ≤ y if and only if f(x) ≤ f(y). Often the quickest way to find f is to
line up all the elements of A in a well-ordering and then count them off: the
smallest element of A gets mapped to 0, the next smallest to 1, and so on.
Stripped of the mathematical jargon, this is exactly what you were taught
to do as a small child.

Usually we will not provide an explicit bijection to compute the size of a
set, but instead will rely on standard counting principles based on how we
constructed the set. The branch of mathematics that studies sets constructed
by combining other sets is called combinatorics, and the sub-branch that
counts these sets is called enumerative combinatorics. In this chapter,
we’re going to give an introduction to enumerative combinatorics, but this
basically just means counting.

For infinite sets, cardinality is a little more complicated. The basic idea
is that we define |A| = |B| if there is a bijection between them. This gives an
equivalence relation on sets2, and we define |A| to be the equivalence class
of this equivalence relation that contains A. For the finite case we represent

1Starting from 0 is traditional in computer science, because it makes indexing easier.
Normal people count to n using {1, 2, . . . , n}.

2Reflexivity: the identity function is a bijection from A to A. Symmetry: if f : A→ B
is a bijection, so is f−1 : B → A. Transitivity: if f : A→ B and g : B → C are bijections,
so is (g ◦ f) : A→ C.

174

CHAPTER 11. COUNTING 175

the equivalence classes by taking representative elements [n].
For the most part we will concentrate on counting finite sets, but will

mention where the rules for finite sets break down with infinite sets.

11.1 Basic counting techniques
Our goal here is to compute the size of some set of objects, e.g., the number
of subsets of a set of size n, the number of ways to put k cats into n boxes
so that no box gets more than one cat, etc.

In rare cases we can use the definition of the size of a set directly, by
constructing a bijection between the set we care about and some canonical set
[n]. For example, the set Sn =

{
x ∈ N

∣∣ x < n2 ∧ ∃y : x = y2} has exactly n
members, because we can generate it by applying the one-to-one correspon-
dence f(y) = y2 to the set {0, 1, 2, 3, . . . , n− 1} = [n]. But most of the time
constructing an explicit one-to-one correspondence is too time-consuming
or too hard, so instead we will show how to map set-theoretic operations to
arithmetic operations, so that from a set-theoretic construction of a set we
can often directly read off an arithmetic computation that gives the size of
the set.

11.1.1 Equality: reducing to a previously-solved case

If we can produce a bijection between a set A whose size we don’t know and
a set B whose size we do, then we get |A| = |B|. Pretty much all of our
proofs of cardinality will end up looking like this.

11.1.2 Inequalities: showing |A| ≤ |B| and |B| ≤ |A|

We write |A| ≤ |B| if there is an injection f : A→ B, and similarly |B| ≤ |A|
if there is an injection g : B → A. If both conditions hold, then there is a
bijection between A and B, showing |A| = |B|. This fact is trivial for finite
sets, but for infinite sets—even though it is still true—the actual construction
of the bijection is a little trickier.3

3The claim for general sets is known as the Cantor-Bernstein-Schroeder theorem. One
way to prove this is to assume that A and B are disjoint and construct a (not necessarily
finite) graph whose vertex set is A ∪ B and that has edges for all pairs (a, f(a)) and
(b, g(b)). It can then be shown that the connected components of this graph consist of (1)
finite cycles, (2) doubly-infinite paths (i.e., paths with no endpoint in either direction), (3)
infinite paths with an initial vertex in A, and (4) infinite paths with an initial vertex in B.
For vertexes in all but the last class of components, define h(x) to be f(x) if x is in A and
f−1(x) if x is in B. (Note that we are abusing notation slightly here by defining f−1(x)

CHAPTER 11. COUNTING 176

Similarly, if we write |A| ≥ |B| to indicate that there is a surjection from
A to B, then |A| ≥ |B| and |B| ≥ |A| implies |A| = |B|. The easiest way to
show this is to observe that if there is a surjection f : A→ B, then we can
get an injection f ′ : B → A by letting f ′(y) be any element of {x | f(x) = y},
thus reducing to the previous case (this requires the Axiom of Choice, but
pretty much everybody assumes the Axiom of Choice). Showing an injection
f : A→ B and a surjection g : A→ B also works.

For example, |Q| = |N|. Proof: |N| ≤ |Q| because we can map any n in
N to the same value in Q; this is clearly an injection. To show |Q| ≤ |N|,
observe that we can encode any element ±p/q of Q, where p and q are both
natural numbers, as a triple (s, p, q) where (s ∈ {0, 1} indicates + (0) or −
(1); this encoding is clearly injective. Then use the Cantor pairing function
(§3.7.1) twice to crunch this triple down to a single natural number, getting
an injection from Q to N.

11.1.3 Addition: the sum rule

The sum rule computes the size of A ∪B when A and B are disjoint.

Theorem 11.1.1. If A and B are finite sets with A ∩B = ∅, then

|A ∪B| = |A|+ |B|.

Proof. Let f : A→ [|A|] and g : B → [|B|] be bijections. Define h : A∪B →
[|A|+ |B|] by the rule h(x) = f(x) for x ∈ A, h(x) = |A|+ g(x) for x ∈ B.

To show that this is a bijection, define h−1(y) for y in [|A|+ |b|] to be
f−1(y) if y < |A| and g−1(y − |A|) otherwise. Then for any y in [|A|+ |B|],
either

1. 0 ≤ y < |A|, y is in the codomain of f (so h−1(y) = f−1(y) ∈ A is
well-defined), and h(h−1(y)) = f(f−1(y)) = y.

2. |A| ≤ y < |A|+ |B|. In this case 0 ≤ y − |A| < |B|, putting y − |A| in
the codomain of g and giving h(h−1(y)) = g(g−1(y − |A|)) + |A| = y.

So h−1 is in fact an inverse of h, meaning that h is a bijection.

to be the unique y that maps to x when it exists.) For the last class of components, the
initial B vertex is not the image of any x under f ; so for these we define h(x) to be g(x) if
x is in B and g−1(x) if x is in A. This gives the desired bijection h between A and B.
In the case where A and B are not disjoint, we can make them disjoint by replacing

them with A′ = {0} ×A and B′ = {1} ×B. (This is a pretty common trick for enforcing
disjoint unions.)

CHAPTER 11. COUNTING 177

One way to think about this proof is that we are constructing a total
order on A∪B by putting all the A elements before all the B elements. This
gives a straightforward bijection with [|A|+ |B|] by the usual preschool trick
of counting things off in order.

Generalizations: If A1, A2, A3 . . . Ak are pairwise disjoint (i.e., Ai ∩
Aj = ∅ for all i 6= j), then ∣∣∣∣∣

k⋃
i=1

Ai

∣∣∣∣∣ =
k∑
i=1
|Ai|.

The proof is by induction on k.
Example: As I was going to Saint Ives, I met a man with 7 wives, 28

children, 56 grandchildren, and 122 great-grandchildren. Assuming these sets
do not overlap, how many people did I meet? Answer: 1+7+28+56+122=214.

11.1.3.1 For infinite sets

The sum rule works for infinite sets, too; technically, the sum rule is used
to define |A| + |B| as |A ∪B| when A and B are disjoint. This makes
cardinal arithmetic a bit wonky: if at least one of A and B is infinite, then
|A|+ |B| = max(|A|, |B|), since we can space out the elements of the larger
of A and B and shove the elements of the other into the gaps.

11.1.3.2 The Pigeonhole Principle

A consequence of the sum rule is that if A and B are both finite and
|A| > |B|, you can’t have an injection from A to B. The proof is by
contraposition. Suppose f : A → B is an injection. Write A as the union
of f−1(x) for each x ∈ B, where f−1(x) is the set of y in A that map to
x. Because each f−1(x) is disjoint, the sum rule applies; but because f is
an injection there is at most one element in each f−1(x). It follows that
|A| =

∑
x∈B

∣∣f−1(x)
∣∣ ≤∑x∈B 1 = |B|. (Question: Why doesn’t this work for

infinite sets?)
The Pigeonhole Principle generalizes in an obvious way to functions

with larger domains; if f : A → B, then there is some x in B such that∣∣f−1(x)
∣∣ ≥ |A|/|B|.

CHAPTER 11. COUNTING 178

11.1.4 Subtraction

For any sets A and B, A is the disjoint union of A ∩ B and A \ B. So
|A| = |A ∩B|+ |A \B| (for finite sets) by the sum rule. Rearranging gives

|A \B| = |A| − |A ∩B|. (11.1.1)

What makes (11.1.1) particularly useful is that we can use it to compute
the size of A ∪B even if A and B overlap. The intuition is that if we just
add |A| and |B|, then we count every element of A∩B twice; by subtracting
off |A ∩B| we eliminate the overcount. Formally, we have

Theorem 11.1.2. For any finite sets A and B,

|A ∪B| = |A|+ |B| − |A ∩B|.

Proof. Compute

|A ∪B| = |A ∩B|+ |A \B|+ |B \A|
= |A ∩B|+ (|A| − |A ∩B|) + (|B| − |A ∩B|)
= |A|+ |B| − |A ∩B|.

This is a special case of the inclusion-exclusion formula, which can
be used to compute the size of the union of many sets using the size of
pairwise, triple-wise, etc. intersections of the sets. See §11.2.4 for the general
rule.

11.1.4.1 Inclusion-exclusion for infinite sets

Subtraction doesn’t work very well for infinite quantities (while ℵ0 +ℵ0 = ℵ0,
that doesn’t mean ℵ0 = 0). So the closest we can get to the inclusion-
exclusion formula is that |A|+ |B| = |A ∪B|+ |A ∩B|. If at least one of A
or B is infinite, then |A ∪B| is also infinite, and since |A ∩B| ≤ |A ∪B| we
have |A ∪B|+ |A ∩B| = |A ∪B| by the bizarre rules of cardinal arithmetic.
So for infinite sets we have the rather odd result that |A ∪B| = |A|+ |B| =
max(|A|, |B|) whether the sets overlap or not.

CHAPTER 11. COUNTING 179

11.1.4.2 Combinatorial proof

We can prove |A|+ |B| = |A ∪B|+ |A ∩B| combinatorially, by turning both
sides of the equation into disjoint unions (so the sum rule works) and then
providing an explicit bijection between the resulting sets. The trick is that
we can always force a union to be disjoint by tagging the elements with extra
information; so on the left-hand side we construct L = {0} ×A ∪ {1} ×B,
and on the right-hand side we construct R = {0} × (A ∪B) ∪ {1} × (A ∩B).
It is easy to see that both unions are disjoint, because we are always taking
the union of a set of ordered pairs that start with 0 with a set of ordered
pairs that start with 1, and no ordered pair can start with both tags; it
follows that |L| = |A| + |B| and |R| = |A ∪B| + |A ∩B|. Now define the
function f : L→ R by the rule

f((0, x)) = (0, x).
f((1, x)) = (1, x)if x ∈ B ∩A.
f((1, x)) = (0, x)if x ∈ B \A.

Observe that f is surjective, because for any (0, x) in {0} × (A ∪ B),
either x is in A and (0, x) = f((0, x)) where (0, x) ∈ L, or x is in B \A and
(0, x) = f((1, x)) where (1, x) ∈ L. It is also true that f is injective; the only
way for it not to be is if f((0, x)) = f((1, x)) = (0, x) for some x. Suppose
this occurs. Then x ∈ A (because of the 0 tag) and x ∈ B \A (because (1, x)
is only mapped to (0, x) if x ∈ B \A). But x can’t be in both A and B \A,
so we get a contradiction.

11.1.5 Multiplication: the product rule

The product rule says that Cartesian product maps to arithmetic product.
Intuitively, we line the elements (a, b) of A×B in lexicographic order and
count them off. This looks very much like packing a two-dimensional array
in a one-dimensional array by mapping each pair of indices (i, j) to i · |B|+ j.

Theorem 11.1.3. For any finite sets A and B,

|A×B| = |A| · |B|.

Proof. The trick is to order A × B lexicographically and then count off
the elements. Given bijections f : A → [|A|] and g : B → [|B|], define
h : (A × B) → [|A| · |B|] by the rule h((a, b)) = a · |B| + b. The division

CHAPTER 11. COUNTING 180

algorithm recovers a and b from h(a, b) by recovering the unique natural
numbers q and r such that h(a, b) = q · |B|+ r and 0 ≤ b < |B| and letting
a = f−1(q) and b = g−1(r).

The general form is ∣∣∣∣∣
k∏
i=1

Ai

∣∣∣∣∣ =
k∏
i=1
|Ai|,

where the product on the left is a Cartesian product and the product on
the right is an ordinary integer product.

11.1.5.1 Examples

• As I was going to Saint Ives, I met a man with seven sacks, and every
sack had seven cats. How many cats total? Answer: Label the sacks
0, 1, 2, . . . , 6, and label the cats in each sack 0, 1, 2, . . . , 6. Then each cat
can be specified uniquely by giving a pair (sack number, cat number),
giving a bijection between the set of cats and the set 7 × 7. Since
|7× 7| = 7 · 7 = 49, we have 49 cats.

• Dr. Frankenstein’s trusty assistant Igor has brought him 6 torsos, 4
brains, 8 pairs of matching arms, and 4 pairs of legs. How many
different monsters can Dr Frankenstein build? Answer: there is a one-
to-one correspondence between possible monsters and 4-tuples of the
form (torso,brain,pair of arms,pair of legs); the set of such 4-tuples
has 6 · 4 · 8 · 4 = 728 members.

• How many different ways can you order n items? Call this quantity
n! (pronounced “n factorial”). With 0 or 1 items, there is only one
way; so we have 0! = 1! = 1. For n > 1, there are n choices for the
first item, leaving n− 1 items to be ordered. From the product rule
we thus have n! = n · (n− 1)!, which we can expand out as

∏n
i=1 i, our

previous definition of n!.

11.1.5.2 For infinite sets

The product rule also works for infinite sets, because we again use it as a
definition: for any A and B, |A| · |B| is defined to be |A×B|. One oddity for
infinite sets is that this definition gives |A| · |B| = |A|+ |B| = max(|A|, |B|),
because if at least one of A and B is infinite, it is possible to construct a
bijection between A×B and the larger of A and B. Infinite sets are strange.

CHAPTER 11. COUNTING 181

11.1.6 Exponentiation: the exponent rule

Given sets A and B, let AB be the set of functions f : B → A. Then∣∣∣AB∣∣∣ = |A||B|.
If |B| is finite, this is just a |B|-fold application of the product rule: we

can write any function f : B → A as a sequence of length |B| that gives
the value in A for each input in B. Since each element of the sequence
contributes |A| possible choices, we get |A||B| choices total.

For infinite sets, the exponent rule is a definition of |A||B|. Some simple
facts are that nα = 2α whenever n is finite and α is infinite (this comes down
to the fact that we can represent any element of [n] as a finite sequence of
bits) and αn = α under the same conditions (follows by induction on n from
α ·α = α). When α and β are both infinite, many strange things can happen.

To give a flavor of how exponentiation works for arbitrary sets, here’s
a combinatorial proof of the usual arithmetic fact that xaxb = xa+b, for
any cardinal numbers x, a, and b. Let x = |X| and let a = |A| and
b = |B| where A and B are disjoint (we can always use the tagging trick
that we used for inclusion-exclusion to make A and B be disjoint). Then
xaxb =

∣∣∣XA ×XB
∣∣∣ and xa+b =

∣∣∣XA∪B
∣∣∣. We will now construct an explicit

bijection f : XA∪B → XA×XB. The input to f is a function g : A∪B → X;
the output is a pair of functions (gA : A→ X, gB : B → X). We define gA
by gA(x) = g(x) for all x in A (this makes gA the restriction of g to A,
usually written as g � A or g|A); similarly gB = g � B. This is easily seen to
be a bijection; if g = h, then f(g) = (g � A, g � B) = f(h) = (h � A, h � B),
and if g 6= h there is some x for which g(x) 6= h(x), implying g � A 6= h � A
(if x is in A) or g � B 6= h � B (if x is in B).

11.1.6.1 Counting injections

Counting injections from a k-element set to an n-element set corresponds
to counting the number of ways P (n, k) we can pick an ordered subset of k
of n items without replacement, also known as picking a k-permutation.
(The k elements of the domain correspond to the k positions in the order.)

There are n ways to pick the first item, n− 1 to pick the second, and so
forth, giving a total of

P (n, k) =
n∏

i=n−k+1
i = n!

(n− k)!

such k-permutations by the product rule.

CHAPTER 11. COUNTING 182

Among combinatorialists, the notation (n)k (pronounced “n lower-
factorial k”) is more common than P (n, k) for n·(n−1)·(n−2)·. . .·(n−k+1).
As an extreme case we have (n)n = n · (n− 1) · (n− 2) · . . . · (n− n+ 1) =
n · (n− 1) · (n− 2) · . . . · 1 = n!, so n! counts the number of permutations
of n.

This gives us three tools for counting functions between sets: nk counts
the number of functions from a k-element set to an n-element set, (n)k counts
the number of injections from a k-element set to an n-element set, and n!
counts the number of bijections between two n-element sets (or from an
n-element set to itself).

Counting surjections is messier. If you really need to do this, you will
need to use Stirling numbers; see [GKP94, Chapter 6] or [Sta97, p. 33].

11.1.7 Division: counting the same thing in two different
ways

An old farm joke:

Q: How do you count a herd of cattle?

A: Count the legs and divide by four.

Sometimes we can compute the size of a set S by using it (as an unknown
variable) to compute the size of another set T (as a function of |S|), and
then using some other way to count T to find its size, finally solving for |S|.
This is known as counting two ways and is surprisingly useful when it
works. We will assume that all the sets we are dealing with are finite, so we
can expect things like subtraction and division to work properly.

11.1.7.1 Binomial coefficients

What is |Sk|? Answer: First we’ll count the number m of sequences of k
elements of S with no repetitions. We can get such a sequence in two ways:

1. By picking a size-k subset A and then choosing one of k! ways to order
the elements. This gives m = |Sk| · k!.

2. By choosing the first element in one of n ways, the second in one
of n − 1, the third in one of n − 2 ways, and so on until the k-th
element, which can be chosen in one of n − k + 1 ways. This gives
m = (n)k = n · (n− 1) · (n− 2) · . . . (n− k + 1), which can be written
as n!/(n− k)!. (Here we are using the factors in (n− k)! to cancel out
the factors in n! that we don’t want.)

CHAPTER 11. COUNTING 183

So we have m = |Sk| · k! = n!/(n− k)!, from which we get

|Sk| =
n!

k! · (n− k)! .

This quantity turns out to be so useful that it has a special notation:(
n

k

)
def= n!

k! · (n− k)! .

where the left-hand side is known as a binomial coefficient and is
pronounced “n choose k.” We discuss binomial coefficients at length in §11.2.
The secret of why it’s called a binomial coefficient will be revealed when we
talk about generating functions in §11.3.

11.1.7.2 Multinomial coefficients

Here’s a generalization of binomial coefficients: let the multinomial coeffi-
cient (

n

n1 n2 . . . nk

)
be the number of different ways to distribute n items among k bins

where the i-th bin gets exactly ni of the items and we don’t care what
order the items appear in each bin. (Obviously this only makes sense if
n1 + n2 + · · ·+ nk = n.) Can we find a simple formula for the multinomial
coefficient?

Here are two ways to count the number of permutations of the n-element
set:

1. Pick the first element, then the second, etc., to get n! permutations.

2. Generate a permutation in three steps:

(a) Pick a partition of the n elements into blocks of size n1, n2, . . . nk.
(b) Order the elements of each block.
(c) Paste the blocks together into a single ordered list.

There are (
n

n1 n2 . . . nk

)

CHAPTER 11. COUNTING 184

ways to pick the partition and

n1! · n2! · · ·nk!

ways to order the elements of all the groups, so we have

n! =
(

n

n1 n2 . . . nk

)
· n1! · n2! · · ·nk!,

which we can solve to get(
n

n1 n2 . . . nk

)
= n!
n1! · n2! · · ·nk!

.

This also gives another way to derive the formula for a binomial coefficient,
since (

n

k

)
=
(

n

k (n− k)

)
= n!
k! · (n− k)! .

11.1.8 Applying the rules

If you’re given some strange set to count, look at the structure of its descrip-
tion:

• If it’s given by a rule of the form x is in S if either P (x) or Q(x) is
true, use the sum rule (if P and Q are mutually exclusive) or inclusion-
exclusion. This includes sets given by recursive definitions, e.g. x is a
tree of depth at most k if it is either (a) a single leaf node (provided
k > 0) or (b) a root node with two subtrees of depth at most k − 1.
The two classes are disjoint so we have T (k) = 1 + T (k − 1)2 with
T (0) = 0.4

• For objects made out of many small components or resulting from
many small decisions, try to reduce the description of the object to
something previously known, e.g. (a) a word of length k of letters from
an alphabet of size n allowing repetition (there are nk of them, by the
product rule); (b) a word of length k not allowing repetition (there
are (n)k of them—or n! if n = k); (c) a subset of k distinct things
from a set of size n, where we don’t care about the order (there are

(n
k

)
of them); any subset of a set of n things (there are 2n of them—this

4Of course, just setting up a recurrence doesn’t mean it’s going to be easy to actually
solve it.

CHAPTER 11. COUNTING 185

is a special case of (a), where the alphabet encodes non-membership
as 0 and membership as 1, and the position in the word specifies the
element). Some examples:

– The number of games of Tic-Tac-Toe assuming both players keep
playing until the board is filled is obtained by observing that each
such game can be specified by listing which of the 9 squares are
filled in order, giving 9! = 362880 distinct games. Note that we
don’t have to worry about which of the 9 moves are made by X
and which by O, since the rules of the game enforce it. (If we
only consider games that end when one player wins, this doesn’t
work: probably the easiest way to count such games is to send a
computer off to generate all of them. This gives 255168 possible
games and 958 distinct final positions.)

– The number of completely-filled-in Tic-Tac-Toe boards can be
obtained by observing that any such board has 5 X’s and 4 O’s.
So there are

(9
5
)

= 126 such positions. (Question: Why would this
be smaller than the actual number of final positions?)

Sometimes reducing to a previous case requires creativity. For example,
suppose you win n identical cars on a game show and want to divide them
among your k greedy relatives. Assuming that you don’t care about fairness,
how many ways are there to do this?

• If it’s OK if some people don’t get a car at all, then you can imagine
putting n cars and k − 1 dividers in a line, where relative 1 gets all
the cars up to the first divider, relative 2 gets all the cars between the
first and second dividers, and so forth up to relative k who gets all
the cars after the (k − 1)-th divider. Assume that each car—and each
divider—takes one parking space. Then you have n + k − 1 parking
spaces with k − 1 dividers in them (and cars in the rest). There are
exactly

(n+k−1
k−1

)
ways to do this.

• Alternatively, suppose each relative demands at least 1 car. Then you
can just hand out one car to each relative to start with, leaving n− k
cars to divide as in the previous case. There are

((n−k)+k−1
k−1

)
=
(n−1
k−1
)

ways to do this.
As always, whenever some counting problem turns out to have an easier
answer than expected, it’s worth trying to figure out if there is a more
direct combinatorial proof. In this case we want to encode assignments

CHAPTER 11. COUNTING 186

of at least one of n cars to k people, so that this corresponds to picking
k − 1 out of n− 1 things. One way to do this is to imagine lining up
all n cars, putting each relative in front of one of the cars, and giving
them that car plus any car to the right until we hit the next relative.
In order for this to assign all the cars, we have to put the leftmost
relative in front of the leftmost car. This leaves n − 1 places for the
k − 1 remaining relatives, giving

(n−1
k−1
)
choices.

Finding correspondences like this is a central part of enumerative combi-
natorics, the branch of mathematics that deals with counting things.

11.1.9 An elaborate counting problem

Suppose you have the numbers {1, 2, . . . , 2n}, and you want to count how
many sequences of k of these numbers you can have that are (a) increasing
(a[i] < a[i+ 1] for all i), (b) decreasing (a[i] ≥ a[i+ 1] for all i), or (c) made
up only of even numbers.

This is the union of three sets A, B, and C, corresponding to the three
cases. The first step is to count each set individually; then we can start
thinking about applying inclusion-exclusion to get the size of the union.

For A, any increasing sequence can be specified by choosing its elements
(the order is determined by the assumption it is increasing). So we have
|A| =

(2n
k

)
.

For B, by symmetry we have |B| = |A| =
(2n
k

)
.

For C, we are just looking at nk possible sequences, since there are n
even numbers we can put in each position.

Inclusion-exclusion says that |A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| −
|A ∩ C| − |B ∩ C|+ |A ∪B ∪ C|. It’s not hard to see that A ∩B = ∅ when
k is at least 2,5 so we can reduce this to |A|+ |B|+ |C| − |A ∩ C| − |B ∩ C|.
To count A ∩ C, observe that we are now looking at increasing sequences
chosen from the n possible even numbers; so there are exactly

(n
k

)
of them,

and similarly for B ∩ C. Summing up gives a total of(
2n
k

)
+
(

2n
k

)
+ nk −

(
n

k

)
−
(
n

k

)
= 2

((
2n
k

)
−
(
n

k

))
+ nk

sequences satisfying at least one of the criteria.
5It’s even easier to assume that A ∩B = ∅ always, but for k = 1 any sequence is both

increasing and nonincreasing, since there are no pairs of adjacent elements in a 1-element
sequence to violate the property.

CHAPTER 11. COUNTING 187

Note that we had to assume k = 2 to get A∩B = ∅, so this formula might
require some adjustment for k < 2. In fact we can observe immediately that
the unique empty sequence for k = 1 fits in all of A, B, and C, so in this
case we get 1 winning sequence (which happens to be equal to the value in
the formula, because here A∩B = ∅ for other reasons), and for k = 1 we get
2n winning sequences (which is less than the value 3n given by the formula).

To test that the formula works for at least some larger values, let n = 3
and k = 2. Then the formula predicts 2

((6
2
)
−
(3
2
))

+ 32 = 2(15− 3) + 9 = 33

CHAPTER 11. COUNTING 188

total sequences.6 And here they are:

(1, 2)
(1, 3)
(1, 4)
(1, 5)
(1, 6)
(2, 1)
(2, 2)
(2, 3)
(2, 4)
(2, 5)
(2, 6)
(3, 1)
(3, 2)
(3, 4)
(3, 5)
(3, 6)
(4, 1)
(4, 2)
(4, 3)
(4, 4)
(4, 5)
(4, 6)
(5, 1)
(5, 2)
(5, 3)
(5, 4)
(5, 6)
(6, 1)
(6, 2)
(6, 3)
(6, 4)
(6, 5)
(6, 6)

6Without looking at the list, can you say which 3 of the 62 = 36 possible length-2
sequences are missing?

CHAPTER 11. COUNTING 189

11.1.10 Further reading

Rosen [Ros12] does basic counting in Chapter 6 and more advanced counting
(including solving recurrences and using generating functions) in chapter 8.
Biggs [Big02] gives a basic introduction to counting in Chapters 6 and 10,
with more esoteric topics in Chapters 11 and 12. Graham et al. [GKP94]
have quite a bit on counting various things.

Combinatorics largely focuses on counting rather than efficient algorithms
for constructing particular combinatorial objects. The book Constructive
Combinatorics, by Stanton and White, [SW86] remedies this omission, and
includes algorithms not only for enumerating all instances of various classes of
combinatorial objects but also for finding the i-th such instance in an appropri-
ate ordering without having to generate all previous instances (unranking)
and the inverse operation of finding the position of a particular object in an
appropriate ordering (ranking).

11.2 Binomial coefficients
The binomial coefficient “n choose k”, written(

n

k

)
= (n)k

k! = n!
k! · (n− k)! , (11.2.1)

counts the number of k-element subsets of an n-element set. (See §11.1.7.1
for how to derive (11.2.1).)

The name arises from the binomial theorem, which in the following
form was first proved by Isaac Newton:

Theorem 11.2.1 (Binomial theorem). For any n ∈ R,

(x+ y)n =
∞∑
k=0

(
n

k

)
xkyn−k, (11.2.2)

provided the sum converges.

A sufficient condition for the sum converging is |x/y| < 1. For the general
version of the theorem,

(n
k

)
is defined as (n)k /k!, which works even if n is

not a non-negative integer. The usual proof requires calculus.
In the common case when n is a non-negative integer, we can limit

ourselves to letting k range from 0 to n. The reason is that
(n
k

)
= 0 when n

CHAPTER 11. COUNTING 190

is a non-negative integer and k > n. This gives the more familiar version

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k. (11.2.3)

The connection between (11.2.3) and counting subsets is straightforward:
expanding (x+ y)n using the distributive law gives 2n terms, each of which
is a unique sequence of n x’s and y’s. If we think of the x’s in each term as
labeling a subset of the n positions in the term, the terms that get added
together to get xkyn−k correspond one-to-one to subsets of size k. So there
are

(n
k

)
such terms, accounting for the coefficient on the right-hand side.

11.2.1 Recursive definition

If we don’t like computing factorials, we can also compute binomial coefficients
recursively. This may actually be less efficient for large n (we need to do Θ(n2)
additions instead of Θ(n) multiplications and divisions), but the recurrence
gives some insight into the structure of binomial coefficients.

Base cases:

• If k = 0, then there is exactly one zero-element set of our n-element
set—it’s the empty set—and we have

(n
0
)

= 1.

• If k > n, then there are no k-element subsets, and we have ∀k > n :(n
k

)
= 0.

Recursive step: We’ll use Pascal’s identity, which says that(
n

k

)
=
(
n− 1
k

)
+
(
n− 1
k − 1

)
.

The easiest proof of this identity is combinatorial, which means that we
will construct an explicit bijection between a set counted by the left-hand
side and a set counted by the right-hand side. This is often one of the best
ways of understanding simple binomial coefficient identities.

On the left-hand side, we are counting all the k-element subsets of an
n-element set S. On the right hand side, we are counting two different
collections of sets: the (k − 1)-element and k-element subsets of an (n− 1)-
element set. The trick is to recognize that we get an (n− 1)-element set S′
from our original set by removing one of the elements x. When we do this,
we affect the subsets in one of two ways:

CHAPTER 11. COUNTING 191

1. If the subset doesn’t contain x, it doesn’t change. So there is a one-
to-one correspondence (the identity function) between k-subsets of S
that don’t contain x and k-subsets of S′. This bijection accounts for
the first term on the right-hand side.

2. If the subset does contain x, then we get a (k − 1)-element subset
of S′ when we remove it. Since we can go back the other way by
reinserting x, we get a bijection between k-subsets of S that contain x
and (k − 1)-subsets of S′. This bijection accounts for the second term
on the right-hand side.

Adding the two cases together (using the sum rule), we conclude that
the identity holds.

Using the base case and Pascal’s identity, we can construct Pascal’s
triangle, a table of values of binomial coefficients:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
. . .

Each row corresponds to increasing values of n, and each column to
increasing values of k, with

(0
0
)
in the upper left-hand corner. To compute each

entry, we add together the entry directly above it and the entry diagonally
above and to the left.

11.2.1.1 Pascal’s identity: algebraic proof

Using the binomial theorem plus a little bit of algebra, we can prove Pascal’s
identity without using a combinatorial argument (this is not necessarily an
improvement). The additional fact we need is that if we have two equal
series ∞∑

k=0
akx

k =
∞∑
k=0

bkx
k

then ak = bk for all k.7

7This is a theorem in analysis if the series represents converges in some open interval
around 0, and follows from the ability to extract coefficients from f(x) =

∑∞
k=0 akx

k by

CHAPTER 11. COUNTING 192

Here’s the proof of Pascal’s identity:
n∑
k=0

(
n

k

)
xk = (1 + x)n

= (1 + x)(1 + x)n−1

= (1 + x)n−1 + x(1 + x)n−1

=
n−1∑
k=0

(
n− 1
k

)
xk + x

n−1∑
k=0

(
n− 1
k

)
xk

=
n−1∑
k=0

(
n− 1
k

)
xk +

n−1∑
k=0

(
n− 1
k

)
xk+1

=
n−1∑
k=0

(
n− 1
k

)
xk +

n∑
k=1

(
n− 1
k − 1

)
xk

=
n∑
k=0

(
n− 1
k

)
xk +

n∑
k=0

(
n− 1
k − 1

)
xk

=
n∑
k=0

((
n− 1
k

)
+
(
n− 1
k − 1

))
xk.

and now we equate matching coefficients to get(
n

k

)
=
(
n− 1
k

)
+
(
n− 1
k − 1

)

as advertised.

11.2.2 Vandermonde’s identity

Vandermonde’s identity says that, provided r does not exceed m or n,(
m+ n

r

)
=

r∑
k=0

(
m

r − k

)(
n

k

)
.

11.2.2.1 Combinatorial proof

To pick r elements of an m+ n element set, we have to pick some of them
from the first m elements and some from the second n elements. Suppose

taking derivatives: ak = 1
k!f

(k)(0), where f (k) = dk

dxk f(x). Alternatively, we can treat each
series as a formal power series, which we think of a s an infinite sequence of coefficients
on which we can do the usual arithmetic operations without worrying about convergence.

CHAPTER 11. COUNTING 193

we choose k elements from the last n; there are
(n
k

)
different ways to do

this, and
(m
r−k
)
different ways to choose the remaining r− k from the first m.

This gives (by the product rule)
(m
r−k
)(n
k

)
ways to choose r elements from the

whole set if we limit ourselves to choosing exactly k from the last n. The
identity follow by summing over all possible values of k.

11.2.2.2 Algebraic proof

Here we use the fact that, for any sequences of coefficients {ai} and {bi},(
n∑
i=0

aix
i

)(
m∑
i=0

bix
i

)
=

m+n∑
i=0

 i∑
j=0

ajbi−j

xi.
So now consider

m+n∑
r=0

(
m+ n

r

)
xr = (1 + x)m+n

= (1 + x)n(1 + x)m

=
(

n∑
i=0

(
n

i

)
xi
) m∑

j=0

(
m

j

)
xj

=

m+n∑
r=0

(
r∑

k=0

(
n

k

)(
m

r − k

))
xr.

and equate terms with matching exponents.
Is this more enlightening than the combinatorial version? It depends on

what kind of enlightenment you are looking for. In this case the combinatorial
and algebraic arguments are counting essentially the same things in the same
way, so it’s not clear what if any advantage either has over the other. But in
many cases it’s easier to construct an algebraic argument than a combinatorial
one, in the same way that it’s easier to do arithmetic using standard grade-
school algorithms than by constructing explicit bijections. On the other
hand, a combinatorial argument may let you carry other things you know
about some structure besides just its size across the bijection, giving you
more insight into the things you are counting. The best course is probably
to have both techniques in your toolbox.

CHAPTER 11. COUNTING 194

11.2.3 Sums of binomial coefficients

What is the sum of all binomial coefficients for a given n? We can show

n∑
k=0

(
n

k

)
= 2n

combinatorially, by observing that adding up all subsets of an n-element
set of all sizes is the same as counting all subsets. Alternatively, apply the
binomial theorem to (1 + 1)n.

Here’s another sum, with alternating sign. This is useful if you want to
know how the even-k binomial coefficients compare to the odd-k binomial
coefficients.

n∑
k=0

(−1)k
(
n

k

)
= 0.(Assuming n 6= 0.)

Proof: (1 − 1)n = 0n = 0 when n is nonzero. (When n is zero, the 0n
part still works, since 00 = 1 =

(0
0
)
(−1)0.)

By now it should be obvious that

n∑
k=0

2k
(
n

k

)
= 3n.

It’s not hard to construct more examples of this phenomenon.

11.2.4 The general inclusion-exclusion formula

We’ve previously seen that |A ∪B| = |A|+ |B|− |A ∩B|. The generalization
of this fact from two to many sets is called the inclusion-exclusion formula
and says:

Theorem 11.2.2.∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
∑

S⊆{1...n},S 6=∅
(−1)|S|+1

∣∣∣∣∣∣
⋂
j∈S

Aj

∣∣∣∣∣∣. (11.2.4)

This rather horrible expression means that to count the elements in the
union of n sets A1 through An, we start by adding up all the individual sets
|A1| + |A2| + . . . |An|, then subtract off the overcount from elements that
appear in two sets −|A1 ∩A2| − |A1 ∩A3| − . . . , then add back the resulting
undercount from elements that appear in three sets, and so on.

CHAPTER 11. COUNTING 195

Why does this work? Consider a single element x that appears in k of
the sets. We’ll count it as +1 in

(k
1
)
individual sets, as −1 in

(k
2
)
pairs, +1

in
(k

3
)
triples, and so on, adding up to

k∑
i=1

(−1)k+1
(
k

i

)
= −

(
k∑
i=1

(−1)k
(
k

i

))
= −

(
k∑
i=0

(−1)k
(
k

i

)
− 1

)
= − (0− 1) = 1.

11.2.5 Negative binomial coefficients

Though it doesn’t make sense to talk about the number of k-subsets of
a (−1)-element set, the binomial coefficient

(n
k

)
has a meaningful value for

negative n, which works in the binomial theorem. We’ll use the lower-factorial
version of the definition:(

−n
k

)
= (−n)k /k! =

 −n∏
i=−n−k+1

i

 /k!.

Note we still demand that k ∈ N; we are only allowed to do funny things
with the upper index n.

So for example:(
−1
k

)
= (−1)k /k! =

 −1∏
i=−1−k+1

i

 /k! =

 −1∏
i=−k

i

 /(k∏
i=1

i

)
= (−1)k.

An application of this fact is that

1
1− z = (1− z)−1 =

∞∑
n=0

(
−1
n

)
1−1−n(−z)n =

∞∑
n=0

(−1)n(−z)n =
∞∑
n=0

zn.

In computing this sum, we had to be careful which of 1 and −z got the
n exponent and which got −1− n. If we do it the other way, we get

1
1− z = (1− z)−1 =

∞∑
n=0

(
−1
n

)
1n(−z)−1−n = −1

z

∞∑
n=0

1
zn

This turns out to actually be correct, since applying the geometric series
formula turns the last line into

−1
z
· 1

1− 1/z = − 1
z − 1 = 1

1− z ,

but it’s a lot less useful.

CHAPTER 11. COUNTING 196

What happens for a larger upper index? One way to think about (−n)k is
that we are really computing (n+ k − 1)k and then negating all the factors,
which is equivalent to multiplying the whole expression by (−1)k. So this
gives us the identity (

−n
k

)
= (−n)k

k!

= (−1)k (n+ k − 1)k
k!

= (−1)k
(
n+ k − 1

k

)
.

So, for example,

1
(1− z)2 = (1− z)−2

=
∑
n

(
−2
n

)
1−2−n(−z)n

=
∑
n

(−1)n
(
n+ 1
n

)
(−z)n

=
∑
n

(n+ 1)zn.

If you are a fan of calculus,8 you can also get this result by computing

1
(1− z)2 = d

dz

1
1− z

= d

dz

∞∑
n=0

zn

=
∞∑
n=0

d

dz
zn

=
∞∑
n=0

nzn−1

=
∞∑
n=0

(n+ 1)zn.

These facts will be useful when we look at generating functions in §11.3.
8Or just got back from reading Appendix H.

CHAPTER 11. COUNTING 197

11.2.6 Fractional binomial coefficients

Yes, we can do fractional binomial coefficients, too. Exercise: Find the value
of (

1/2
n

)
= (1/2)n

n! .

Like negative binomial coefficients, these don’t have an obvious com-
binatorial interpretation, but can be handy for computing power series of
fractional binomial powers like

√
1 + z = (1 + z)1/2.

11.2.7 Further reading

Graham et al. [GKP94] §5.1–5.3 is an excellent source for information about
all sorts of facts about binomial coefficients.

11.3 Generating functions
We’ve seen that in some cases we can use the binomial theorem to express
infinite power series like

∑
n z

n as compact expressions like 1
1−z . The compact

representation is called a generating function of the series, and manipu-
lating generating functions can be an efficient tool to keep track of series
whose coefficients represent sequences of counts of combinatorial objects of
different sizes.

11.3.1 Basics

A generating function represents objects of weight n with zn, and adds all
the objects you have up to get a sum a0z

0 +a1z
1 +a2z

2 + . . . , where each an
counts the number of different objects of weight n. If you are very lucky (or
constructed your set of objects by combining simpler sets of objects in certain
straightforward ways) there will be some compact expression that is expands
to this horrible sum but is easier to write down. Such compact expressions
are called generating functions, and manipulating them algebraically gives
an alternative to actually knowing how to count (Chapter 11).

11.3.1.1 A simple example

We are given some initial prefixes for words: qu, s, and t; some vowels to
put in the middle: a, i, and oi; and some suffixes: d, ff, and ck, and we
want to calculate the number of words we can build of each length.

CHAPTER 11. COUNTING 198

One way is to generate all 27 words9 and sort them by length:

sad sid tad tid
quad quid sack saff sick siff soid tack taff tick tiff toid
quack quaff quick quiff quoid soick soiff toick toiff
quoick quoiff

This gives us 4 length-3 words, 12 length-4 words, 9 length-5 words, and
2 length-6 words. This is probably best done using a computer, and becomes
expensive if we start looking at much larger lists.

An alternative is to solve the problem by judicious use of algebra. Pretend
that each of our letters is actually a variable, and that when we concatenate
qu, oi, and ck to make quoick, we are really multiplying the variables
using our usual notation. Then we can express all 27 words as the product
(qu+ s+ t)(a+ i+ oi)(d+ ff+ ck). But we don’t care about the exact set
of words, we just want to know how many we get of each length.

So now we do the magic trick: we replace every variable we’ve got with a
single variable z. For example, this turns quoick into zzzzzz = z6, so we
can still find the length of a word by reading off the exponent on z. But we
can also do this before we multiply everything out, getting

(zz + z + z)(z + z + zz)(z + zz + zz) = (2z + z2)(2z + z2)(z + 2z2)
= z3(2 + z)2(1 + 2z)
= z3(4 + 4z + z2)(1 + 2z)
= z3(4 + 12z + 9z2 + 2z3)
= 4z3 + 12z4 + 9z5 + 2z6.

We can now read off the number of words of each length directly off the
coefficients of this polynomial.

11.3.1.2 Why this works

In general, what we do is replace any object of weight 1 with z. If we have
an object with weight n, we think of it as n weight-1 objects stuck together,
i.e., zn. Disjoint unions are done using addition as in simple counting: z+ z2

represents the choice between a weight-1 object and a weight-2 object (which
might have been built out of 2 weight-1 objects), while 12z4 represents a

9We are using word in the combinatorial sense of a finite sequence of letters (possibly
even the empty sequence) and not the usual sense of a finite, nonempty sequence of letters
that actually make sense.

CHAPTER 11. COUNTING 199

choice between 12 different weight-4 objects. The trick is that when we
multiply two expressions like this, whenever two values zk and zl collide, the
exponents add to give a new value zk+l representing a new object with total
weight k + l, and if we have something more complex like (nzk)(mzl), then
the coefficients multiply to give (nm)zk+l different weight (k + l) objects.

For example, suppose we want to count the number of robots we can
build given 5 choices of heads, each of weight 2, and 6 choices of bodies, each
of weight 5. We represent the heads by 5z2 and the bodies by 6z5. When
we multiply these expressions together, the coefficients multiply (which we
want, by the product rule) and the exponents add: we get 5z2 · 6z5 = 30z7

or 30 robots of weight 7 each.
The real power comes in when we consider objects of different weights. If

we add to our 5 weight-2 robot heads two extra-fancy heads of weight 3, and
compensate on the body side with three new lightweight weight-4 bodies,
our new expression is (5z2 + 2z3)(3z4 + 6z5) = 15z6 + 36z7 + 12z8, giving
a possible 15 weight-6 robots, 36 weight-7 robots, and 12 weight-8 robots.
The rules for multiplying polynomials automatically tally up all the different
cases for us.

This trick even works for infinitely-long polynomials that represent infinite
series (such “polynomials” are called formal power series). Even though
there might be infinitely many ways to pick three natural numbers, there
are only finitely many ways to pick three natural numbers whose sum is
37. By computing an appropriate formal power series and extracting the
coefficient from the z37 term, we can figure out exactly how many ways
there are. This works best, of course, when we don’t have to haul around
an entire infinite series, but can instead represent it by some more compact
function whose expansion gives the desired series. Such a function is called
a generating function, and manipulating generating functions can be a
powerful alternative to creativity in making combinatorial arguments.

11.3.1.3 Formal definition

Given a sequence a0, a1, a2, . . . , its generating function F (z) is given by
the sum

F (z) =
∞∑
i=0

aiz
i.

A sum in this form is called a formal power series. It is “formal” in
the sense that we don’t necessarily plan to actually compute the sum, and
are instead using the string of zi terms as a long rack to store coefficients on.

CHAPTER 11. COUNTING 200

In some cases, the sum has a more compact representation. For example,
we have

1
1− z =

∞∑
i=0

zi,

so 1/(1− z) is the generating function for the sequence 1, 1, 1, This
may let us manipulate this sequence conveniently by manipulating the
generating function.

Here’s a simple case. If F (z) generates some sequence ai, what does
sequence bi does F (2z) generate? The i-th term in the expansion of F (2z)
will be ai(2z)i = ai2izi, so we have bi = 2iai. This means that the se-
quence 1, 2, 4, 8, 16, . . . has generating function 1/(1−2z). In general, if F (z)
represents ai, then F (cz) represents ciai.

What else can we do to F? One useful operation is to take its derivative
with respect to z. We then have

d

dz
F (z) =

∞∑
i=0

ai
d

dz
zi =

∞∑
i=0

aiiz
i−1.

This almost gets us the representation for the series iai, but the exponents
on the z’s are off by one. But that’s easily fixed:

z
d

dz
F (z) = z

∞∑
i=0

aiiz
i−1 =

∞∑
i=0

aiiz
i.

So the sequence 0, 1, 2, 3, 4, . . . has generating function

z
d

dz

1
1− z = z

(1− z)2 ,

and the sequence of squares 0, 1, 4, 9, 16, . . . has generating function

z
d

dz

z

(1− z)2 = z

(1− z)2 + 2z2

(1− z)3 .

As you can see, some generating functions are prettier than others.
(We can also use integration to divide each term by i, but the details are

messier.)
Another way to get the sequence 0, 1, 2, 3, 4, . . . is to observe that it

satisfies the recurrence:

• a0 = 0.

CHAPTER 11. COUNTING 201

• an+1 = an + 1(∀n ∈ N).

A standard trick in this case is to multiply each of the ∀i bits by zn, sum
over all n, and see what happens. This gives

∑
an+1z

n =
∑
anz

n +
∑
zn =∑

anz
n + 1/(1− z). The first term on the right-hand side is the generating

function for an, which we can call F (z) so we don’t have to keep writing it
out. The second term is just the generating function for 1, 1, 1, 1, 1, But
what about the left-hand side? This is almost the same as F (z), except the
coefficients don’t match up with the exponents. We can fix this by dividing
F (z) by z, after carefully subtracting off the a0 term:

(F (z)− a0)/z =
(∞∑
n=0

anz
n − a0

)
/z

=
(∞∑
n=1

anz
n

)
/z

=
∞∑
n=1

anz
n−1

=
∞∑
n=0

an+1z
n.

So this gives the equation (F (z)−a0)/z = F (z)+1/(1−z). Since a0 = 0,
we can rewrite this as F (z)/z = F (z) + 1/(1 − z). A little bit of algebra
turns this into F (z)− zF (z) = z/(1− z) or F (z) = z/(1− z)2.

Yet another way to get this sequence is construct a collection of objects
with a simple structure such that there are exactly n objects with weight n.
One way to do this is to consider strings of the form a+b∗ where we have
at least one a followed by zero or more b’s. This gives n strings of length
n, because we get one string for each of the 1 through n a’s we can put in
(an example would be abb, aab, and aaa for n = 3). We can compute the
generating function for this set because to generate each string we must pick
in order:

• One initial a. Generating function = z.

• Zero or more a’s. Generating function = 1/(1− z).

• Zero or more b’s. Generating function = 1/(1− z).

Taking the product of these gives z/(1− z)2, as before.
This trick is useful in general; if you are given a generating function F (z)

for an, but want a generating function for bn =
∑
k≤n ak, allow yourself to

CHAPTER 11. COUNTING 202

pad each weight-k object out to weight n in exactly one way using n − k
junk objects, i.e. multiply F (z) by 1/(1− z).

11.3.2 Some standard generating functions

Here is a table of some of the most useful generating functions.

1
1− z =

∞∑
i=0

zi

z

(1− z)2 =
∞∑
i=0

izi

(1 + z)n =
∞∑
i=0

(
n

i

)
zi =

n∑
i=0

(
n

i

)
zi

1
(1− z)n =

∞∑
i=0

(
n+ i− 1

i

)
zi

Of these, the first is the most useful to remember (it’s also handy for
remembering how to sum geometric series). All of these equations can be
proven using the binomial theorem.

11.3.3 More operations on formal power series and generat-
ing functions

Let F (z) =
∑
i aiz

i and G(z) =
∑
i biz

i. Then their sum F (z) + G(z) =∑
i(ai + bi)zi is the generating function for the sequence (ai + bi). What is

their product F (z)G(z)?
To compute the i-th term of F (z)G(z), we have to sum over all pairs of

terms, one from F and one from G, that produce a zi factor. Such pairs of
terms are precisely those that have exponents that sum to i. So we have

F (z)G(z) =
∞∑
i=0

 i∑
j=0

ajbj−i

 zi.
As we’ve seen, this equation has a natural combinatorial interpretation.

If we interpret the coefficient ai on the i-th term of F (z) as counting the
number of “a-things” of weight i, and the coefficient bi as the number of
“b-things” of weight i, then the i-th coefficient of F (z)G(z) counts the number
of ways to make a combined thing of total weight i by gluing together an
a-thing and a b-thing.

CHAPTER 11. COUNTING 203

As a special case, if F (z) = G(z), then the i-th coefficient of F (z)G(z) =
F 2(z) counts how many ways to make a thing of total weight i using two
“a-things”, and Fn(z) counts how many ways (for each i) to make a thing of
total weight i using n “a-things”. This gives us an easy combinatorial proof
of a special case of the binomial theorem:

(1 + x)n =
∞∑
i=0

(
n

i

)
xi.

Think of the left-hand side as the generating function F (x) = 1+x raised
to the n-th power. The function F by itself says that you have a choice
between one weight-0 object or one weight-1 object. On the right-hand side
the i-th coefficient counts how many ways you can put together a total of i
weight-1 objects given n to choose from—so it’s

(n
i

)
.

11.3.4 Counting with generating functions

The product formula above suggests that generating functions can be used to
count combinatorial objects that are built up out of other objects, where our
goal is to count the number of objects of each possible non-negative integer
“weight” (we put “weight” in scare quotes because we can make the “weight”
be any property of the object we like, as long as it’s a non-negative integer—a
typical choice might be the size of a set, as in the binomial theorem example
above). There are five basic operations involved in this process; we’ve seen
two of them already, but will restate them here with the others.

Throughout this section, we assume that F (z) is the generating function
counting objects in some set A and G(z) the generating function counting
objects in some set B.

11.3.4.1 Disjoint union

Suppose C = A∪B and A and B are disjoint. Then the generating function
for objects in C is F (z) +G(z).

Example: Suppose that A is the set of all strings of zero or more letters x,
where the weight of a string is just its length. Then F (z) = 1/(1− z), since
there is exactly one string of each length and the coefficient ai on each zi is
always 1. Suppose that B is the set of all strings of zero or more letters y
and/or z, so that G(z) = 1/(1−2z) (since there are now 2i choices of length-i
strings). The set C of strings that are either (a) all x’s or (b) made up of y’s,
z’s, or both, has generating function F (z) +G(z) = 1/(1− z) + 1/(1− 2z).

CHAPTER 11. COUNTING 204

11.3.4.2 Cartesian product

Now let C = A × B, and let the weight of a pair (a, b) ∈ C be the sum of
the weights of a and b. Then the generating function for objects in C is
F (z)G(z).

Example: Let A be all-x strings and B be all-y or all-z strings, as in the
previous example. Let C be the set of all strings that consist of zero or more
x’s followed by zero or more y’s and/or z’s. Then the generating function
for C is F (z)G(z) = 1

(1−z)(1−2z) .

11.3.4.3 Repetition

Now let C consists of all finite sequences of objects in A, with the weight of
each sequence equal to the sum of the weights of its elements (0 for an empty
sequence). Let H(z) be the generating function for C. From the preceding
rules we have

H = 1 + F + F 2 + F 3 + · · · = 1
1− F .

This works best when H(0) = 0; otherwise we get infinitely many weight-0
sequences. It’s also worth noting that this is just a special case of substitution
(see below), where our “outer” generating function is 1/(1− z).

Example: (0|11)∗ Let A = {0, 11}, and let C be the set of all sequences
of zeros and ones where ones occur only in even-length runs. Then the
generating function for A is z + z2 and the generating function for C is
1/(1−z−z2). We can extract exact coefficients from this generating function
using the techniques below.

Example: sequences of positive integers Suppose we want to know
how many different ways there are to generate a particular integer as a sum
of positive integers. For example, we can express 4 as 4, 3 + 1, 2 + 2, 2 + 1 + 1,
1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, or 1 + 3, giving 8 different ways.

We can solve this problem using the repetition rule. Let F = z/(1− z)

CHAPTER 11. COUNTING 205

generate all the positive integers. Then

H = 1
1− F

= 1
1− z

1−z

= 1− z
(1− z)− z

= 1− z
1− 2z .

We can get exact coefficients by observing that
1− z
1− 2z = 1

1− 2z −
z

1− 2z

=
∞∑
n=0

2nzn −
∞∑
n=0

2nzn+1

=
∞∑
n=0

2nzn −
∞∑
n=1

2n−1zn

= 1 +
∞∑
n=1

(2n − 2n−1)zn

= 1 +
∞∑
n=1

2n−1zn.

This means that there is 1 way to express 0 (the empty sum), and 2n−1

ways to express any larger value n (e.g. 24−1 = 8 ways to express 4).
Once we know what the right answer is, it’s not terribly hard to come

up with a combinatorial explanation. The quantity 2n−1 counts the number
of subsets of an (n− 1)-element set. So imagine that we have n− 1 places
and we mark some subset of them, plus add an extra mark at the end; this
might give us a pattern like XX-X. Now for each sequence of places ending
with a mark we replace it with the number of places (e.g. XX-X = 1, 1, 2,
X--X-X---X = 1, 3, 2, 4). Then the sum of the numbers we get is equal to n,
because it’s just counting the total length of the sequence by dividing it up
at the marks and the adding the pieces back together. The value 0 doesn’t
fit this pattern (we can’t put in the extra mark without getting a sequence
of length 1), so we have 0 as a special case again.

If we are very clever, we might come up with this combinatorial expla-
nation from the beginning. But the generating function approach saves us
from having to be clever.

CHAPTER 11. COUNTING 206

11.3.4.4 Pointing

This operation is a little tricky to describe. Suppose that we can think of
each weight-k object in A as consisting of k items, and that we want to count
not only how many weight-k objects there are, but how many ways we can
produce a weight-k object where one of its k items has a special mark on
it. Since there are k different items to choose for each weight-k object, we
are effectively multiplying the count of weight-k objects by k. In generating
function terms, we have

H(z) = z
d

dz
F (z).

Repeating this operation allows us to mark more items (with some items
possibly getting more than one mark). If we want to mark n distinct items
in each object (with distinguishable marks), we can compute

H(z) = zn
dn

dzn
F (z),

where the repeated derivative turns each term aiz
i into aii(i − 1)(i −

2) . . . (i− n+ 1)zi−n and the zn factor fixes up the exponents. To make the
marks indistinguishable (i.e., we don’t care what order the values are marked
in), divide by n! to turn the extra factor into

(i
n

)
.

(If you are not sure how to take a derivative, look at §H.2.)
Example: Count the number of finite sequences of zeros and ones where

exactly two digits are underlined. The generating function for {0, 1} is 2z,
so the generating function for sequences of zeros and ones is F = 1/(1− 2z)
by the repetition rule. To mark two digits with indistinguishable marks, we
need to compute

1
2z

2 d
2

dz2
1

1− 2z = 1
2z

2 d

dz

2
(1− 2z)2 = 1

2z
2 8
(1− 2z)3 = 4z2

(1− 2z)3 .

11.3.4.5 Substitution

Suppose that the way to make a C-thing is to take a weight-k A-thing and
attach to each its k items a B-thing, where the weight of the new C-thing is
the sum of the weights of the B-things. Then the generating function for C
is the composition F (G(z)).

Why this works: Suppose we just want to compute the number of C-things
of each weight that are made from some single specific weight-k A-thing.
Then the generating function for this quantity is just (G(z))k. If we expand
our horizons to include all ak weight-k A-things, we have to multiply by ak

CHAPTER 11. COUNTING 207

to get ak(G(z))k. If we further expand our horizons to include A-things of
all different weights, we have to sum over all k:

∞∑
k=0

ak(G(z))k.

But this is just what we get if we start with F (z) and substitute G(z)
for each occurrence of z, i.e. if we compute F (G(z)).

Example: bit-strings with primes Suppose we let A be all sequences
of zeros and ones, with generating function F (z) = 1/(1− 2z). Now suppose
we can attach a single or double prime to each 0 or 1, giving 0′ or 0′′ or
1′ or 1′′, and we want a generating function for the number of distinct
primed bit-strings with n attached primes. The set {′, ′′} has generating
function G(z) = z + z2, so the composite set has generating function F (z) =
1/(1− 2(z + z2)) = 1/(1− 2z − 2z2).

Example: (0|11)* again The previous example is a bit contrived. Here’s
one that’s a little more practical, although it involves a brief digression into
multivariate generating functions. A multivariate generating function
F (x, y) generates a series

∑
ij aijx

iyj , where aij counts the number of things
that have i x’s and j y’s. (There is also the obvious generalization to more
than two variables). Consider the multivariate generating function for the
set {0, 1}, where x counts zeros and y counts ones: this is just x+ y. The
multivariate generating function for sequences of zeros and ones is 1/(1−x−y)
by the repetition rule. Now suppose that each 0 is left intact but each 1 is
replaced by 11, and we want to count the total number of strings by length,
using z as our series variable. So we substitute z for x and z2 for y (since
each y turns into a string of length 2), giving 1/(1 − z − z2). This gives
another way to get the generating function for strings built by repeating 0
and 11.

11.3.5 Generating functions and recurrences

What makes generating functions particularly useful for algorithm analysis
is that they directly solve recurrences of the form T (n) = aT (n − 1) +
bT (n−2)+f(n) (or similar recurrences with more T terms on the right-hand
side), provided we have a generating function F (z) for f(n). The idea is
that there exists some generating function G(z) that describes the entire
sequence of values T (0), T (1), T (2), . . . , and we just need to solve for it

CHAPTER 11. COUNTING 208

by restating the recurrence as an equation about G. The left-hand side
will just turn into G. For the right-hand side, we need to shift T (n − 1)
and T (n − 2) to line up right, so that the right-hand side will correctly
represent the sequence T (0), T (1), aT (0) + aT (1) + F (2), etc. It’s not hard
to see that the generating function for the sequence 0, T (0), T (1), T (2), . . .
(corresponding to the T (n−1) term) is just zG(z), and similarly the sequence
0, 0, T (1), T (2), T (3), . . . (corresponding to the T (n− 2) term) is z2G(z). So
we have (being very careful to subtract out extraneous terms at for i = 0
and i = 1):

G = az(G− T (0)) + bz2G+ (F − f(0)− zf(1)) + T (0) + zT (1),

and after expanding F we can in principle solve this for G as a function
of z.

11.3.5.1 Example: A Fibonacci-like recurrence

Let’s take a concrete example. The Fibonacci-like recurrence

T (n) = T (n− 1) + T (n− 2), T (0) = 1, T (1) = 1,

becomes
G = (zG− z) + z2G+ 1 + z.

(here F = 0).
Solving for G gives

G = 1/(1− z − z2).

Unfortunately this is not something we recognize from our table, although
it has shown up in a couple of examples. (Exercise: Why does the recurrence
T (n) = T (n− 1) + T (n− 2) count the number of strings built from 0 and
11 of length n?) In the next section we show how to recover a closed-form
expression for the coefficients of the resulting series.

11.3.6 Recovering coefficients from generating functions

There are basically three ways to recover coefficients from generating func-
tions:

1. Recognize the generating function from a table of known generat-
ing functions, or as a simple combination of such known generating
functions. This doesn’t work very often but it is possible to get lucky.

CHAPTER 11. COUNTING 209

2. To find the k-th coefficient of F (z), compute the k-th derivative
dk/dzkF (z) and divide by k! to shift ak to the z0 term. Then sub-
stitute 0 for z. For example, if F (z) = 1/(1 − z) then a0 = 1 (no
differentiating), a1 = 1/(1 − 0)2 = 1, a2 = 1/(1 − 0)3 = 1, etc. This
usually only works if the derivatives have a particularly nice form or
if you only care about the first couple of coefficients (it’s particularly
effective if you only want a0).

3. If the generating function is of the form 1/Q(z), whereQ is a polynomial
with Q(0) 6= 0, then it is generally possible to expand the generating
function out as a sum of terms of the form Pc/(1−z/c) where c is a root
of Q (i.e. a value such that Q(c) = 0). Each denominator Pc will be a
constant if c is not a repeated root; if c is a repeated root, then Pc can be
a polynomial of degree up to one less than the multiplicity of c. We like
these expanded solutions because we recognize 1/(1− z/c) =

∑
i c
−izi,

and so we can read off the coefficients ai generated by 1/Q(z) as an
appropriately weighted some of c−i1 , c−i2 , etc., where the cj range over
the roots of Q.

Example: Take the generating function G = 1/(1 − z − z2). We can
simplify it by factoring the denominator: 1− z− z2 = (1− az)(1− bz) where
1/a and 1/b are the solutions to the equation 1 − z − z2 = 0; in this case
a = (1 +

√
5)/2, which is approximately 1.618 and b = (1−

√
5)/2, which is

approximately −0.618. It happens to be the case that we can always expand
1/P (z) as A/(1− az) + B/(1− bz) for some constants A and B whenever
P is a degree 2 polynomial with constant coefficient 1 and distinct roots a
and b, so

G = A

1− az + B

1− bz ,

and here we can recognize the right-hand side as the sum of the generating
functions for the sequences A · ai and B · bi. The A · ai term dominates, so
we have that T (n) = Θ(an), where a is approximately 1.618. We can also
solve for A and B exactly to find an exact solution if desired.

A rule of thumb that applies to recurrences of the form T (n) = a1T (n−
1) + a2T (n− 2) + . . . akT (n− k) + f(n) is that unless f is particularly large,
the solution is usually exponential in 1/x, where x is the smallest root of
the polynomial 1− a1z − a2z

2 · · · − akzk. This can be used to get very quick
estimates of the solutions to such recurrences (which can then be proved
without fooling around with generating functions).

Exercise: What is the exact solution if T (n) = T (n− 1) + T (n− 2) + 1?
Or if T (n) = T (n− 1) + T (n− 2) + n?

CHAPTER 11. COUNTING 210

11.3.6.1 Partial fraction expansion and Heaviside’s cover-up method

There is a nice trick for finding the numerators in a partial fraction expansion.
Suppose we have

1
(1− az)(1− bz) = A

1− az + B

1− bz .

Multiply both sides by 1− az to get

1
1− bz = A+ B(1− az)

1− bz .

Now plug in z = 1/a to get

1
1− b/a = A+ 0.

We can immediately read off A. Similarly, multiplying by 1 − bz and
then setting 1− bz to zero gets B. The method is known as the “cover-up
method” because multiplication by 1− az can be simulated by covering up
1− az in the denominator of the left-hand side and all the terms that don’t
have 1− az in the denominator in the right hand side.

The cover-up method will work in general whenever there are no repeated
roots, even if there are many of them; the idea is that setting 1− qz to zero
knocks out all the terms on the right-hand side but one. With repeated roots
we have to worry about getting numerators that aren’t just a constant, so
things get more complicated. We’ll come back to this case below.

Example: A simple recurrence Suppose f(0) = 0, f(1) = 1, and for
n ≥ 2, f(n) = f(n− 1) + 2f(n− 2). Multiplying these equations by zn and
summing over all n gives a generating function

F (z) =
∑
n=0
∞f(n)zn = 0 · z0 + 1 · z1 +

∞∑
n=2

f(n− 1)zn +
∞∑
n=2

2f(n− 2)zn.

With a bit of tweaking, we can get rid of the sums on the RHS by

CHAPTER 11. COUNTING 211

converting them into copies of F :

F (z) = z +
∞∑
n=2

f(n− 1)zn + 2
∞∑
n=2

f(n− 2)zn

= z +
∞∑
n=1

f(n)zn+1 + 2
∞∑
n=0

f(n)zn+2

= z + z
∞∑
n=1

f(n)zn + 2z2
∞∑
n=0

f(n)zn

= z + z(F (z)− f(0)z0) + 2z2F (z)
= z + zF (z) + 2z2F (z).

Now solve for F (z) to get F (x) = z
1−z−2z2 = z

(1+z)(1−2z) = z
(

A
1+z + B

1−2z

)
,

where we need to solve for A and B.
We can do this directly, or we can use the cover-up method. The

cover-up method is easier. Setting z = −1 and covering up 1 + z gives
A = 1/(1 − 2(−1)) = 1/3. Setting z = 1/2 and covering up 1 − 2z gives
B = 1/(1 + z) = 1/(1 + 1/2) = 2/3. So we have

F (z) = (1/3)z
1 + z

+ (2/3)z
1− 2z

=
∞∑
n=0

(−1)n

3 zn+1 +
∞∑
n=0

2 · 2n

3 zn+1

=
∞∑
n=1

(−1)n−1

3 zn +
∞∑
n=1

2n

3 z
n

=
∞∑
n=1

(2n − (−1)n

3

)
zn.

This gives f(0) = 0 and, for n ≥ 1, f(n) = 2n−(−1)n
3 . It’s not hard to

check that this gives the same answer as the recurrence.

Example: Coughing cows Let’s count the number of strings of each
length of the form (M)*(O|U)*(G|H|K)* where (x|y) means we can use x
or y and * means we can repeat the previous parenthesized expression 0 or
more times (these are examples of regular expressions).

We start with a sequence of 0 or more M ’s. The generating function for
this part is our old friend 1/(1− z). For the second part, we have two choices
for each letter, giving 1/(1 − 2z). For the third part, we have 1/(1 − 3z).

CHAPTER 11. COUNTING 212

Since each part can be chosen independently of the other two, the generating
function for all three parts together is just the product:

1
(1− z)(1− 2z)(1− 3z) .

Let’s use the cover-up method to convert this to a sum of partial fractions.
We have

1
(1− z)(1− 2z)(1− 3z) =

(
1

(1−2)(1−3)

)
1− z +

(
1

(1− 1
2)(1− 3

2)

)
1− 2z +

(
1

(1− 1
3)(1− 2

3)

)
1− 3z

=
1
2

1− z + −4
1− 2z +

9
2

1− 3z .

So the exact number of length-n sequences is (1/2)− 4 · 2n + (9/2) · 3n.
We can check this for small n:

n Formula Strings
0 1/2− 4 + 9/2 = 1 ()
1 1/2− 8 + 27/2 = 6 M,O,U,G,H,K
2 1/2− 16 + 81/2 = 25 MM,MO,MU,MG,MH,MK,OO,OU,OG,OH,OK,UO,

UU,UG,UH,UK,GG,GH,GK,HG,HH,HK,KG,KH,KK
3 1/2− 32 + 243/2 = 90 (exercise) ¨̂

Example: A messy recurrence Let’s try to solve the recurrence T (n) =
4T (n− 1) + 12T (n− 2) + 1 with T (0) = 0 and T (1) = 1.

Let F =
∑
T (n)zn.

Summing over all n gives

F =
∞∑
n=0

T (n)zn = T (0)z0 + T (1)z1 + 4
∞∑
n=2

T (n− 1)zn + 12
∞∑
n=2

T (n− 2)zn +
∞∑
n=2

1 · zn

= z + 4z
∞∑
n=1

T (n)zn + 12z2
∞∑
n=0

T (n)zn + z2
∞∑
n=0

zn

= z + 4z(F − T (0)) + 12z2F + z2

1− z

= z + 4zF + 12z2F + z2

1− z .

Solving for F gives

F =

(
z + z2

1−z

)
1− 4z − 12z2 .

CHAPTER 11. COUNTING 213

We want to solve this using partial fractions, so we need to factor (1−
4z − 12z2) = (1 + 2z)(1− 6z). This gives

F =

(
z + z2

1−z

)
(1 + 2z)(1− 6z)

= z

(1 + 2z)(1− 6z) + z2

(1− z)(1 + 2z)(1− 6z) .

= z

 1
(1 + 2z)

(
1− 6

(
−1

2

)) + 1(
1 + 2

(
1
6

))
(1− 6z)

+ z2

 1
(1− z) (1 + 2) (1− 6) + 1(

1−
(
−1

2

))
(1 + 2z)

(
1− 6

(
−1

2

)) + 1(
1− 1

6

) (
1 + 2

(
1
6

))
(1− 6z)

=

1
4z

1 + 2z +
3
4z

1− 6z +
− 1

15z
2

1− z +
1
6z

2

1 + 2z +
9
10z

2

1− 6z .

From this we can immediately read off the value of T (n) for n ≥ 2:

T (n) = 1
4(−2)n−1 + 3

46n−1 − 1
15 + 1

6(−2)n−2 + 9
106n−2

= −1
8(−2)n + 1

86n − 1
15 + 1

24(−2)n + 1
406n

= 3
206n − 1

12(−2)n − 1
15 .

Let’s check this against the solutions we get from the recurrence itself:

n T (n)
0 0
1 1
2 1 + 4 · 1 + 12 · 0 = 5
3 1 + 4 · 5 + 12 · 1 = 33
4 1 + 4 · 33 + 12 · 5 = 193

We’ll try n = 3, and get T (3) = (3/20) · 216 + 8/12− 1/15 = (3 · 3 · 216 +
40− 4)/60 = (1944 + 40− 4)/60 = 1980/60 = 33.

To be extra safe, let’s try T (2) = (3/20) · 36− 4/12− 1/15 = (3 · 3 · 36−
20− 4)/60 = (324− 20− 4)/60 = 300/60 = 5. This looks good too.

The moral of this exercise? Generating functions can solve ugly-looking
recurrences exactly, but you have to be very very careful in doing the math.

CHAPTER 11. COUNTING 214

11.3.6.2 Partial fraction expansion with repeated roots

Let an = 2an−1 + n, with some constant a0. We’d like to find a closed-form
formula for an.

As a test, let’s figure out the first few terms of the sequence:

a0 = a0
a1 = 2a0 + 1
a2 = 4a0+2+2= 4a0 + 4
a3 = 8a0+8+3= 8a0 + 11
a4 = 16a0 + 22+4= 16a0 + 26

The a0 terms look nice (they’re 2na0), but the 0, 1, 4, 11, 26 sequence
doesn’t look like anything familiar. So we’ll find the formula the hard way.

First we convert the recurrence into an equation over generating functions
and solve for the generating function F :∑

anz
n = 2

∑
an−1z

n +
∑

nzn + a0

F = 2zF + z

(1− z)2 + a0

(1− 2z)F = z

(1− z)2 + a0

F = z

(1− z)2(1− 2z) + a0
1− 2z .

Observe that the right-hand term gives us exactly the 2na0 terms we
expected, since 1/(1− 2z) generates the sequence 2n. But what about the
left-hand term? Here we need to apply a partial-fraction expansion, which is
simplified because we already know how to factor the denominator but is
complicated because there is a repeated root.

We can now proceed in one of two ways: we can solve directly for the
partial fraction expansion, or we can use an extended version of Heaviside’s
cover-up method that handles repeated roots using differentiation. We’ll
start with the direct method.

Solving for the PFE directly Write

1
(1− z)2(1− 2z) = A

(1− z)2 + B

1− 2z
.

We expect B to be a constant and A to be of the form A1z +A0.

CHAPTER 11. COUNTING 215

To find B, use the technique of multiplying by 1−2z and setting z = 1/2:

1
(1− 1

2)2 = A · 0
(1− z)2 +B.

So B = 1/(1− 1/2)2 = 1/(1/4) = 4.
We can’t do this for A, but we can solve for it after substituting in B = 4:

1
(1− z)2(1− 2z) = A

(1− z)2 + 4
1− 2z

1 = A(1− 2z) + 4(1− z)2

A = 1− 4(1− z)2

1− 2z

= 1− 4 + 8z − 4z2

1− 2z

= −3 + 8z − 4z2

1− 2z

= −(1− 2z)(3− 2z)
1− 2z

= 2z − 3.

So we have the expansion

1
(1− z)2(1− 2z) = 2z − 3

(1− z)2 + 4
1− 2z ,

from which we get

F = z

(1− z)2(1− 2z) + a0
1− 2z

= 2z2 − 3z
(1− z)2 + 4z

1− 2z + a0
1− 2z .

If we remember that 1/(1− z)2 generates the sequence xn = n+ 1 and
1/(1− 2z) generates xn = 2n, then we can quickly read off the solution (for
large n):

an = 2(n− 1)− 3n+ 4 · 2n−1 + a0 · 2n = 2na0 + 2n+1 − 2− n

which we can check by plugging in particular values of n and comparing
it to the values we got by iterating the recurrence before.

CHAPTER 11. COUNTING 216

The reason for the “large n” caveat is that z2/(1− z)2 doesn’t generate
precisely the sequence xn = n−1, since it takes on the values 0, 0, 1, 2, 3, 4, . . .
instead of −1, 0, 1, 2, 3, 4, Similarly, the power series for z/(1− 2z) does
not have the coefficient 2n−1 = 1/2 when n = 0. Miraculously, in this
particular example the formula works for n = 0, even though it shouldn’t:
2(n− 1) is −2 instead of 0, but 4 · 2n−1 is 2 instead of 0, and the two errors
cancel each other out.

Solving for the PFE using the extended cover-up method It is also
possible to extend the cover-up method to handle repeated roots. Here we
choose a slightly different form of the partial fraction expansion:

1
(1− z)2(1− 2z) = A

(1− z)2 + B

1− z + C

1− 2z .

Here A, B, and C are all constants. We can get A and C by the cover-up
method, where for A we multiply both sides by (1− z)2 before setting z = 1;
this gives A = 1/(1− 2) = −1 and C = 1/(1− 1

2)2 = 4. For B, if we multiply
both sides by (1− z) we are left with A/(1− z) on the right-hand side and a
(1 − z) in the denominator on the left-hand side. Clearly setting z = 1 in
this case will not help us.

The solution is to first multiply by (1 − z)2 as before but then take a
derivative:

1
(1− z)2(1− 2z) = A

(1− z)2 + B

1− z + C

1− 2z
1

1− 2z = A+B(1− z) + C(1− z)2

1− 2z
d

dz

1
1− 2z = d

dz

(
A+B(1− z) + C(1− z)2

1− 2z

)
2

(1− 2z)2 = −B + −2C(1− z)
1− 2z + 2C(1− z)2

(1− 2z)2

Now if we set z = 1, every term on the right-hand side except −B
becomes 0, and we get −B = 2/(1− 2)2 or B = −2.

Plugging A, B, and C into our original formula gives
1

(1− z)2(1− 2z) = −1
(1− z)2 + −2

1− z + 4
1− 2z ,

and thus

F = z

(1− z)2(1− 2z) + a0
1− 2z = z

(−1
(1− z)2 + −2

1− z + 4
1− 2z

)
+ a0

1− 2z .

CHAPTER 11. COUNTING 217

From this we can read off (for large n):

an = 4 · 2n−1 − n− 2 + a0 · 2n = 2n+1 + 2na0 − n− 2.

We believe this because it looks like the solution we already got.

11.3.7 Asymptotic estimates

We can simplify our life considerably if we only want an asymptotic estimate
of an (see Chapter 7). The basic idea is that if an is non-negative for
sufficiently large n and

∑
anz

n converges for some fixed value z, then an
must be o(z−n) in the limit. (Proof: otherwise, anzn is at least a constant
for infinitely many n, giving a divergent sum.) So we can use the radius
of convergence of a generating function F (z), defined as the largest value
r such that F (z) is defined for all (complex) z with |z| < r, to get a quick
estimate of the growth rate of F ’s coefficients: whatever they do, we have
an = O(r−n).

For generating functions that are rational functions (ratios of polyno-
mials), we can use the partial fraction expansion to do even better. First
observe that for F (z) =

∑
fiz

n = 1/(1 − az)k, we have fn =
(k+n−1

n

)
an =

(n+k−1)(n+k−2)...(k−1)
(k−1)! an = Θ(annk−1). Second, observe that the numera-

tor is irrelevant: if 1/(1 − az)k = Θ(annk−1) then bzm/(1 − az)k−1 =
bΘ(an−m(n−m)k−1) = ba−m(1−m/n)k−1Θ(annk−1) = Θ(annk−1), because
everything outside the Θ disappears into the constant for sufficiently large n.
Finally, observe that in a partial fraction expansion, the term 1/(1− az)k
with the largest coefficient a (if there is one) wins in the resulting asymptotic
sum: Θ(an) + Θ(bn) = Θ(an) if |a| > |b|. So we have:

Theorem 11.3.1. Let F (z) =
∑
fnz

n = P (z)/Q(z) where P and Q are
polynomials in z. If Q has a root r with multiplicity k, and all other roots s
of Q satisfy |r| < |s|, then fn = Θ((1/r)nnk−1).

The requirement that r is a unique minimal root of Q is necessary; for
example, F (z) = 2/(1− z2) = 1/(1− z) + 1/(1 + z) generates the sequence
0, 2, 0, 2, . . . , which is not Θ(1) because of all the zeros; here the problem is
that 1− z2 has two roots with the same absolute value, so for some values of
n it is possible for them to cancel each other out.

A root in the denominator of a rational function F is called a pole.
So another way to state the theorem is that the asymptotic value of the
coefficients of a rational generating function is determined by the smallest
pole.

CHAPTER 11. COUNTING 218

More examples:

F (z) Smallest pole Asymptotic value
1/(1− z) 1 Θ(1)
1/(1− z)2 1, multiplicity 2 Θ(n)
1/(1− z − z2) (

√
5− 1)/2 = 2/(1 +

√
5) Θ(((1 +

√
5)/2)n)

1/((1− z)(1− 2z)(1− 3z)) 1/3 Θ(3n)
(z + z2(1− z))/(1− 4z − 12z2) 1/6 Θ(6n)
1/((1− z)2(1− 2z)) 1/2 Θ(2n)

In each case it may be instructive to compare the asymptotic values to
the exact values we obtained earlier.

11.3.8 Recovering the sum of all coefficients

Given a generating function for a convergent series
∑
i aiz

i, we can compute
the sum of all the ai by setting z to 1. Unfortunately, for many common
generating functions setting z = 1 yields 0/0 (if it yields something else
divided by zero then the series diverges). In this case we can recover the
correct sum by taking the limit as z goes to 1 using L’Hôpital’s rule, which
says that limx→c f(x)/g(x) = limx→c f

′(x)/g′(x) when the latter limit exists
and either f(c) = g(c) = 0 or f(c) = g(c) =∞.10

11.3.8.1 Example

Let’s derive the formula for 1 + 2 + · · ·+ n. We’ll start with the generating
function for the series

∑n
i=0 z

i, which is (1− zn + 1)/(1− z). Applying the
z d
dz method gives us

n∑
i=0

izi = z
d

dz

1− zn+1

1− z

= z

(
1

(1− z)2 −
(n+ 1)zn

1− z − zn+1

(1− z)2

)

= z − (n+ 1)zn+1 + nzn+2

(1− z)2 .

10The justification for doing this is that we know that a finite sequence really has
a finite sum, so the “singularity” appearing at z = 1 in e.g. 1−zn+1

1−z is an artifact of
the generating-function representation rather than the original series—it’s a “removable
singularity” that can be replaced by the limit of f(x)/g(x) as x→ c.

CHAPTER 11. COUNTING 219

Plugging z = 1 into this expression gives (1− (n+ 1) + n)/(1− 1) = 0/0,
which does not make us happy. So we go to the hospital—twice, since one
application of L’Hôpital’s rule doesn’t get rid of our 0/0 problem:

lim
z→1

z − (n+ 1)zn+1 + nzn+2

(1− z)2 = lim
z→1

1− (n+ 1)2zn + n(n+ 2)zn+1

−2(1− z)

= lim
z→1

−n(n+ 1)2zn−1 + n(n+ 1)(n+ 2)zn

2

= −n(n+ 1)2 + n(n+ 1)(n+ 2)
2

= −n
3 − 2n2 − n+ n3 + 3n2 + 2n

2

= n2 + n

2 = n(n+ 1)
2 ,

which is our usual formula. Gauss’s childhood proof is a lot quicker, but the
generating-function proof is something that we could in principle automate
most of the work using a computer algebra system, and it doesn’t require
much creativity or intelligence. So it might be the weapon of choice for
nastier problems where no clever proof comes to mind.

More examples of this technique can be found in §11.2, where the binomial
theorem applied to (1 + x)n (which is really just a generating function for∑(n

i

)
zi) is used to add up various sums of binomial coefficients.

11.3.9 A recursive generating function

Let’s suppose we want to count binary trees with n internal nodes. We can
obtain such a tree either by (a) choosing an empty tree (g.f.: z0 = 1); or
(b) choosing a root with weight 1 (g.f. 1 · z1 = z), since we can choose it in
exactly one way), and two subtrees (g.f. = F 2 where F is the g.f. for trees).
This gives us a recursive definition

F = 1 + zF 2.

Solving for F using the quadratic formula gives

F = 1±
√

1− 4z
2z .

That 2z in the denominator may cause us trouble later, but let’s worry
about that when the time comes. First we need to figure out how to extract
coefficients from the square root term.

CHAPTER 11. COUNTING 220

The binomial theorem says

√
1− 4z = (1− 4z)1/2 =

∞∑
n=0

(
1/2
n

)
(−4z)n.

For n ≥ 1, we can expand out the
(1/2
n

)
terms as(

1/2
n

)
= (1/2)n

n!

= 1
n! ·

n−1∏
k=0

(1/2− k)

= 1
n! ·

n−1∏
k=0

1− 2k
2

= (−1)n

2nn! ·
n−1∏
k=0

(2k − 1)

= (−1)n

2nn! ·
∏2n−2
k=1 k∏n−1
k=1 2k

= (−1)n

2nn! ·
(2n− 2)!

2n−1(n− 1)!

= (−1)n

22n−1 ·
(2n− 2)!
n!(n− 1)!

= (−1)n

22n−1(2n− 1) ·
(2n− 1)!
n!(n− 1)!

= (−1)n

22n−1(2n− 1) ·
(

2n− 1
n

)
.

For n = 0, the switch from the big product of odd terms to (2n − 2)!
divided by the even terms doesn’t work, because (2n− 2)! is undefined. So
here we just use the special case

(1/2
0
)

= 1.

CHAPTER 11. COUNTING 221

Now plug this nasty expression back into F to get

F = 1±
√

1− 4z
2z

= 1
2z ±

1
2z

∞∑
n=0

(
1/2
n

)
(−4z)n

= 1
2z ±

(
1
2z + 1

2z

∞∑
n=1

(−1)n−1

22n−1(2n− 1)

(
2n− 1
n

)
(−4z)n

)

= 1
2z ±

(
1
2z + 1

2z

∞∑
n=1

(−1)2n−122n

22n−1(2n− 1)

(
2n− 1
n

)
zn
)

= 1
2z ±

(
1
2z + 1

2z

∞∑
n=1

−2
(2n− 1)

(
2n− 1
n

)
zn
)

= 1
2z ±

(
1
2z −

∞∑
n=1

1
(2n− 1)

(
2n− 1
n

)
zn−1

)

= 1
2z ±

(
1
2z −

∞∑
n=0

1
(2n+ 1)

(
2n+ 1
n+ 1

)
zn
)

=
∞∑
n=0

1
(2n+ 1)

(
2n+ 1
n+ 1

)
zn

=
∞∑
n=0

1
n+ 1

(
2n
n

)
zn.

Here we choose minus for the plus-or-minus to get the right answer and
then do a little bit of tidying up of the binomial coefficient.

We can check the first few values of f(n):

n f(n)
0

(0
0
)

= 1
1 (1/2)

(2
1
)

= 1
2 (1/3)

(4
2
)

= 6/3 = 2
3 (1/4)

(6
3
)

= 20/4 = 5

and these are consistent with what we get if we draw all the small binary
trees by hand.

The numbers 1
n+1

(2n
n

)
show up in a lot of places in combinatorics, and

are known as the Catalan numbers.

CHAPTER 11. COUNTING 222

11.3.10 Summary of operations on generating functions

The following table describes all the nasty things we can do to a generating
function. Throughout, we assume F =

∑
fkz

k, G =
∑
gkz

k, etc.
Operation Generating functions Coefficients Combinatorial in-

terpretation
Find f0 f0 = F (0) Returns f0 Count weight 0 ob-

jects.
Find fk fk = 1

k!
dk

dzk
F (z)|z=0 Returns fk Count weight k ob-

jects.
Flatten F (1) Computes

∑
fk Count all objects,

ignoring weights.
Shift right G = zF gk = fk−1 Add 1 to all

weights.
Shift left G = z−1(F − F (0)) gk = fk+1 Subtract 1 from all

weights, after re-
moving any weight-
0 objects.

Pointing G = z d
dzF gk = kfk A G-thing is an F -

thing with a label
pointing to one of
its units.

Sum H = F +G hk = fk + gk Disjoint union.
Product H = FG hk =

∑
i figk−i Cartesian product.

Composition H = F ◦G H =
∑
fkG

k To make an H-
thing, first choose
an F -thing of
weight m, then
bolt onto it m
G-things. The
weight of the
H-thing is the sum
of the weights of
the G-things.

Repetition G = 1/(1− F) G =
∑
F k A G-thing is a

sequence of zero
or more F -things.
Note: this is just a
special case of com-
position.

CHAPTER 11. COUNTING 223

11.3.11 Variants

The exponential generating function or egf for a sequence a0, . . . is
given by F (z) =

∑
anz

n/n!. For example, the egf for the sequence 1, 1, 1, . . .
is ez =

∑
zn/n!. Exponential generating functions admit a slightly different

set of operations from ordinary generating functions: differentiation gives
left shift (since the factorials compensate for the exponents coming down),
multiplying by z gives bn = nan+1, etc. The main application is that
the product F (z)G(z) of two egf’s gives the sequence whose n-th term is∑(n

k

)
akbn−k; so for problems where we want that binomial coefficient in

the convolution (e.g. when we are building weight n objects not only by
choosing a weight-k object plus a weight-(n−k) object but also by arbitrarily
rearranging their unit-weight pieces) we want to use an egf rather than an
ogf. We won’t use these in CS202, but it’s worth knowing they exist.

A probability generating function or pgf is essentially an ordinary
generating function where each coefficient an is the probability that some
random variable equals n. See §12.2 for more details.

11.3.12 Further reading

Rosen [Ros12] discusses some basic facts about generating functions in §8.4.
Graham et al. [GKP94] give a more thorough introduction. Herbert Wilf’s
book generatingfunctionology, which can be downloaded from the web, will
tell you more about the subject than you probably want to know.

http://www.math.upenn.edu/~wilf/DownldGF.html

Chapter 12

Probability theory

Here are two examples of questions we might ask about the likelihood of
some event:

• Gambling: I throw two six-sided dice, what are my chances of seeing a
7?

• Insurance: I insure a typical resident of Smurfington-upon-Tyne against
premature baldness. How likely is it that I have to pay a claim?

Answers to these questions are summarized by a probability, a number
in the range 0 to 1 that represents the likelihood that some event occurs.
There are two dominant interpretations of this likelihood:

• The frequentist interpretation says that if an event occurs with
probability p, then in the limit as I accumulate many examples of
similar events, I will see the number of occurrences divided by the
number of samples converging to p. For example, if I flip a fair coin
over and over again many times, I expect that heads will come up
roughly half of the times I flip it, because the probability of coming up
heads is 1/2.

• The Bayesian interpretation says that when I say that an event
occurs with probability p, that means my subjective beliefs about the
event would lead me to take a bet that would be profitable on average
if this were the real probability. So a Bayesian would take a double-
or-nothing bet on a coin coming up heads if they believed that the
probability it came up heads was at least 1/2.

Frequentists and Bayesians have historically spent a lot of time arguing
with each other over which interpretation makes sense. The usual argument

224

CHAPTER 12. PROBABILITY THEORY 225

against frequentist probability is that it only works for repeatable experi-
ments, and doesn’t allow for statements like “the probability that it will rain
tomorrow is 50%” or the even more problematic “based on what I know,
there is a 50% probability that it rained yesterday.” The usual argument
against Bayesian probability is that it’s hopelessly subjective—it’s possible
(even likely) that my subjective guesses about the probability that it will
rain tomorrow are not the same as yours.1

As mathematicians, we can ignore such arguments, and treat probability
axiomatically as just another form of counting, where we normalize every-
thing so that we always end up counting to exactly 1. It happens to be the
case that this approach to probability works for both frequentist interpre-
tations (assuming that the probability of an event measures the proportion
of outcomes that cause the event to occur) and Bayesian interpretations
(assuming our subjective beliefs are consistent).

12.1 Events and probabilities
We’ll start by describing the basic ideas of probability in terms of probabilities
of events, which either occur or don’t. Later we will generalize these ideas
and talk about random variables, which may take on many different values
in different outcomes.

12.1.1 Probability axioms

Coming up with axioms for probabilities that work in all the cases we want
to consider took much longer than anybody expected, and the current set in
common use only go back to the 1930’s. Before presenting these, let’s talk a
bit about the basic ideas of probability.

An event A is something that might happen, or might not; it acts like a
predicate over possible outcomes. The probability Pr [A] of an event A is
a real number in the range 0 to 1, that must satisfy certain consistency rules
like Pr [¬A] = 1− Pr [A].

In discrete probability, there is a finite set of atoms, each with an
assigned probability, and every event is a union of atoms. The probability
assigned to an event is the sum of the probabilities assigned to the atoms
it contains. For example, we could consider rolling two six-sided dice. The

1 This caricature of the debate over interpreting probability is thoroughly incomplete.
For a thoroughly complete discussion, including many other interpretations, see http:
//plato.stanford.edu/entries/probability-interpret/.

http://plato.stanford.edu/entries/probability-interpret/
http://plato.stanford.edu/entries/probability-interpret/

CHAPTER 12. PROBABILITY THEORY 226

atoms are the pairs (i, j) that give the value on the first and second die, and
we assign a probability of 1/36 to each pair. The probability that we roll
a 7 is the sum of the cases (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1), or
6/36 = 1/6.

Discrete probability doesn’t work if we have infinitely many atoms. Sup-
pose we roll a pair of dice infinitely many times (e.g., because we want to
know the probability that we never accumulate more 6’s than 7’s in this
infinite sequence). Now there are infinitely many possible outcomes: all the
sequences of pairs (i, j). If we make all these outcomes equally likely, we
have to assign each a probability of zero. But then how do we get back to a
probability of 1/6 that the first roll comes up 7?

12.1.1.1 The Kolmogorov axioms

A triple (Ω,F , P) is a probability space if Ω is a set of outcomes (where
each outcome specifies everything that ever happens, in complete detail); F
is a sigma-algebra, which is a family of subsets of Ω, called measurable
sets, that is closed under complement (i.e., if A is in F then Ω \A is in F)
and countable union (union of A1, A2, . . . is in F if each set Ai is); and P
is a probability measure that assigns a number in [0, 1] to each set in F .
The measure P must satisfy three axioms, due to Kolmogorov [Kol33]:

1. P (A) ≥ 0 for all A ∈ F .

2. P (Ω) = 1.

3. For any sequence of pairwise disjoint events A1, A2, A3, . . . , P (∪Ai) =∑
P (Ai).

From these one can derive rules like P (Ω \A) = 1− P (A) etc.
Most of the time, Ω is finite, and we can just make F include all subsets

of Ω, and define P (A) to be the sum of P ({x}) over all x in A. This gets us
back to the discrete probability model we had before.

Unless we are looking at multiple probability spaces or have some partic-
ular need to examine Ω, F , or P closely, we usually won’t bother specifying
the details of the probability space we are working in. So most of the time we
will just refer to “the” probability Pr [A] of an event A, bearing in mind that
we are implicitly treating A as a subset of some implicit Ω that is measurable
with respect to an implicit F and whose probability is really P (A) for some
implicit measure P .

CHAPTER 12. PROBABILITY THEORY 227

12.1.1.2 Examples of probability spaces

• Ω = {H,T}, F = P(Ω) = {{,} {H} , {T} , {H,T}}, Pr [A] = |A|/2. This
represents a fair coin with two outcomes H and T that each occur with
probability 1/2.

• Ω = {H,T}, F = P(Ω), Pr [{H}] = p, Pr [{T}] = 1− p. This represents
a biased coin, where H comes up with probability p.

• Ω = {(i, j) | i, j ∈ {1, 2, 3, 4, 5, 6}}, F = P(Ω), Pr [A] = |A|/36. Roll of
two fair dice. A typical event might be “the total roll is 4”, which is
the set {(1, 3), (2, 2), (3, 1)} with probability 3/36 = 1/12.

• Ω = N, F = P(Ω), Pr [A] =
∑
n∈A 2−n−1. This is an infinite probability

space; a real-world process that might generate it is to flip a fair coin
repeatedly and count how many times it comes up tails before the first
time it comes up heads. Note that even though it is infinite, we can
still define all probabilities by summing over atoms: Pr [{0}] = 1/2,
Pr [{1}] = 1/4, Pr [{0, 2, 4, . . .}] = 1/2 + 1/8 + 1/32 + · · · = 2/3, etc.

It’s unusual for anybody doing probability to actually write out the
details of the probability space like this. Much more often, a writer will just
assert the probabilities of a few basic events (e.g. Pr [{H}] = 1/2), and claim
that any other probability that can be deduced from these initial probabilities
from the axioms also holds (e.g. Pr [{T}] = 1− Pr [{H}] = 1/2). The main
reason Kolmogorov gets his name attached to the axioms is that he was
responsible for Kolmogorov’s extension theorem, which says (speaking
very informally) that as long as your initial assertions are consistent, there
exists a probability space that makes them and all their consequences true.

12.1.2 Probability as counting

The easiest probability space to work with is a uniform discrete probabil-
ity space, which has N outcomes each of which occurs with probability 1/N .
If someone announces that some quantity is “random” without specifying
probabilities (especially if that someone is a computer scientist), the odds
are that what they mean is that each possible value of the quantity is equally
likely. If that someone is being more careful, they would say that the quantity
is “drawn uniformly at random” from a particular set.

Such spaces are among the oldest studied in probability, and go back
to the very early days of probability theory where randomness was almost
always expressed in terms of pulling tokens out of well-mixed urns, because

CHAPTER 12. PROBABILITY THEORY 228

such “urn models” where one of the few situations where everybody agreed
on what the probabilities should be.

12.1.2.1 Examples

• A random bit has two outcomes, 0 and 1. Each occurs with probability
1/2.

• A die roll has six outcomes, 1 through 6. Each occurs with probability
1/6.

• A roll of two dice has 36 outcomes (order of the dice matters). Each
occurs with probability 1/36.

• A random n-bit string has 2n outcomes. Each occurs with probability
2−n. The probability that exactly one bit is a 1 is obtained by counting
all strings with a single 1 and dividing by 2n. This gives n2−n.

• A poker hand consists of a subset of 5 cards drawn uniformly at
random from a deck of 52 cards. Depending on whether the order of
the 5 cards is considered important (usually it isn’t), there are either(52

5
)
or (52)5 possible hands. The probability of getting a flush (all five

cards in the hand drawn from the same suit of 13 cards) is 4
(13

5
)
/
(52

5
)
;

there are 4 choices of suits, and
(13

5
)
ways to draw 5 cards from each

suit.

• A random permutation on n items has n! outcomes, one for each
possible permutation. A typical event might be that the first element
of a random permutation of 1 . . . n is 1; this occurs with probability
(n−1)!/n! = 1/n. Another example of a random permutation might be
a uniform shuffling of a 52-card deck (difficult to achieve in practice!).
Here, the probability that we get a particular set of 5 cards as the first
5 in the deck is obtained by counting all the permutations that have
those 5 cards in the first 5 positions (there are 5! · 47! of them) divided
by 52!. The result is the same 1/

(52
5
)
that we get from the uniform

poker hands.

12.1.3 Independence and the intersection of two events

Events A and B are independent if Pr [A ∩B] = Pr [A] ·Pr [B]. In general,
a set of events {Ai} is independent if each Ai is independent of any event
defined only in terms of the other events.

CHAPTER 12. PROBABILITY THEORY 229

It can be dangerous to assume that events are independent when they
aren’t, but quite often when describing a probability space we will explic-
itly state that certain events are independent. For example, one typically
describes the space of random n-bit strings (or n coin flips) by saying that
one has n independent random bits and then deriving that each particular
sequence occurs with probability 2−n rather than starting with each sequence
occurring with probability 2−n and then calculating that each particular bit
is 1 with independent probability 1/2. The first description makes much
more of the structure of the probability space explicit, and so is more directly
useful in calculation.

12.1.3.1 Examples

• What is the probability of getting two heads on independent fair
coin flips? Calculate it directly from the definition of independence:
Pr [H1 ∩H2] = (1/2)(1/2) = 1/4.

• Suppose the coin-flips are not independent (maybe the two coins are
glued together). What is the probability of getting two heads? This
can range anywhere from zero (coin 2 always comes up the opposite of
coin 1) to 1/2 (if coin 1 comes up heads, so does coin 2).

• What is the probability that both you and I draw a flush (all 5 cards
the same suit) from the same poker deck? Since we are fighting over
the same collection of same-suit subsets, we’d expect Pr [A ∩B] 6=
Pr [A] · Pr [B]—the event that you get a flush (A) is not independent
of the event that I get a flush (B), and we’d have to calculate the
probability of both by counting all ways to draw two hands that are
both flushes. But if we put your cards back and then shuffle the deck
again, the events in this new case are independent, and we can just
square the Pr [flush] that we calculated before.

• Suppose the Red Sox play the Yankees. What is the probability that
the final score is exactly 4–4? Amazingly, it appears that it is equal to2

Pr [Red Sox score 4 runs against the Yankees]
·Pr [Yankees score 4 runs against the Red Sox] .

To the extent we can measure the underlying probability distribution,
the score of each team in a professional baseball game appears to be
independent of the score of the other team.

2See http://arXiv.org/abs/math/0509698.

http://arXiv.org/abs/math/0509698

CHAPTER 12. PROBABILITY THEORY 230

12.1.4 Union of events

What is the probability of A ∪B? If A and B are disjoint, then the axioms
give Pr [A ∪B] = Pr [A] + Pr [B]. But what if A and B are not disjoint?

By analogy to inclusion-exclusion in counting we would expect that

Pr [A ∪B] = Pr [A] + Pr [B]− Pr [A ∩B] .

Intuitively, when we sum the probabilities of A and B, we double-count
the event that both occur, and must subtract it off to compensate. To prove
this formally, consider the events A ∩ B, A ∩ ¬B, and ¬A ∩ B. These are
disjoint, so the probability of the union of any subset of this set of events is
equal to the sum of its components. So in particular we have

Pr [A] + Pr [B]− Pr [A ∩B]
= (Pr [A ∩B] + Pr [A ∩ ¬B]) + (Pr [A ∩B] + Pr [¬A ∩B])− Pr [A ∩B]
= Pr [A ∩B] + Pr [A ∩ ¬B] + Pr [¬A ∩B]
= Pr [A ∪B] .

12.1.4.1 Examples

• What is the probability of getting at least one head out of two indepen-
dent coin-flips? Compute Pr [H1 ∪H2] = 1/2 + 1/2− (1/2)(1/2) = 3/4.

• What is the probability of getting at least one head out of two coin-flips,
when the coin-flips are not independent? Here again we can get any
probability from 0 to 1, because the probability of getting at least one
head is just 1− Pr [T1 ∩ T2].

For more events, we can use a probabilistic version of the inclusion-
exclusion formula (Theorem 11.2.2). The new version looks like this:
Theorem 12.1.1. Let A1 . . . An be events on some probability space. Then

Pr
[
n⋃
i=1

Ai

]
=

∑
S⊆{1...n},S 6=∅

(−1)|S|+1 Pr

⋂
j∈S

Aj

 . (12.1.1)

For discrete probability, the proof is essentially the same as for The-
orem 11.2.2; the difference is that instead of showing that we add 1 for
each possible element of

⋂
Ai, we show that we add the probability of each

outcome in
⋂
Ai. The result continues to hold for more general spaces, but

requires a little more work.3
3The basic idea is to chop

⋂
Ai into all sets of the form

⋃
Bi where each Bi is either

Ai or ¬Ai; this reduces to the discrete case.

CHAPTER 12. PROBABILITY THEORY 231

12.1.5 Conditional probability

Suppose I want to answer the question “What is the probability that my dice
add up to 6 if I know that the first one is an odd number?” This question
involves conditional probability, where we calculate a probability subject
to some conditions. The probability of an event A conditioned on an event
B, written Pr [A | B], is defined by the formula

Pr [A | B] = Pr [A ∩B]
Pr [B] .

One way to think about this is that when we assert that B occurs we are
in effect replacing the entire probability space with just the part that sits in
B. So we have to divide all of our probabilities by Pr [B] in order to make
Pr [B | B] = 1, and we have to replace A with A ∩B to exclude the part of
A that can’t happen any more.

Note also that conditioning on B only makes sense if Pr [B] > 0. If
Pr [B] = 0, Pr [A | B] is undefined.

12.1.5.1 Conditional probabilities and intersections of non-independent
events

Simple algebraic manipulation gives

Pr [A ∩B] = Pr [A | B] · Pr [B] .

So one of the ways to compute the probability of two events occurring
is to compute the probability of one of them, and the multiply by the
probability that the second occurs conditioned on the first. For example,
if my attempt to reach the summit of Mount Everest requires that I first
learn how to climb mountains (Pr [B] = 0.1) and then make it to the
top safely (Pr [A | B] = 0.9), then my chances of getting to the top are
Pr [A ∩B] = Pr [A | B] · Pr [B] = (0.9)(0.1) = 0.09.

We can do this for sequences of events as well. Suppose that I have an
urn that starts with k black balls and 1 red ball. In each of n trials I draw
one ball uniformly at random from the urn. If it is red, I give up. If it is
black, I put the ball back and add another black ball, thus increasing the
number of balls by 1. What is the probability that on every trial I get a
black ball?

Let Ai be the event that I get a black ball in each of the first i trials.
Then Pr [A0] = 1, and for larger i we have Pr [Ai] = Pr [Ai | Ai−1] Pr [Ai−1].
If Ai−1 holds, then at the time of the i-th trial we have k + i total balls in

CHAPTER 12. PROBABILITY THEORY 232

the urn, of which one is red. So the probability that we draw a black ball is
1− 1

k+i = k+i−1
k+i . By induction we can then show that

Pr [Ai] =
i∏

j=1

k + j − 1
k + j

.

This is an example of a collapsing product, where the denominator of each
fraction cancels out the numerator of the next; we are left only with the
denominator k + i of the last term and the numerator k of the first, giving
Pr [Ai] = k

k+i . It follows that we make it through all n trials with probability
Pr [An] = k

k+n .

12.1.5.2 The law of total probability

We can use the fact that A is the disjoint union of A ∩B and A ∩B to get
Pr [A] by case analysis:

Pr [A] = Pr [A ∩B] + Pr
[
A ∩B

]
= Pr [A | B] Pr [B] + Pr

[
A
∣∣∣ B]Pr

[
B
]
.

For example, if there is a 0.2 chance I can make it to the top of Mt
Everest safely without learning how to climb first, my chances of getting
there go up to (0.9)(0.1) + (0.2)(0.9) = 0.27.

This method is sometimes given the rather grandiose name of the law
of total probability. The most general version is that if B1 . . . Bn are all
disjoint events and the sum of their probabilities is 1, then

Pr [A] =
n∑
i=1

Pr [A | Bi] Pr [Bi] .

12.1.5.3 Bayes’s formula

If one knows Pr [A | B], Pr [A | ¬B], and Pr [B], it’s possible to compute
Pr [B | A]:

Pr [B | A] = Pr [A ∩B]
Pr [A]

= Pr [A | B] Pr [B]
Pr [A]

= Pr [A | B] Pr [B]
Pr [A | B] Pr [B] + Pr

[
A
∣∣∣ B]Pr

[
B
] .

CHAPTER 12. PROBABILITY THEORY 233

This formula is used heavily in statistics, where it goes by the name of
Bayes’s formula. Say that you have an Airport Terrorist Detector that
lights up with probability 0.75 when inserted into the nostrils of a Terrorist,
but lights up with probability 0.001 when inserted into the nostrils of a
non-Terrorist. Suppose that for other reasons you know that Granny has
only a 0.0001 chance of being a Terrorist. What is the probability that
Granny is a Terrorist if the detector lights up?

Let B be the event “Granny is a terrorist” and A the event “Detector
lights up.” Then Pr [B | A] = (0.75×0.0001)/(0.75×0.0001+0.001×0.9999) ≈
0.0007495. This example shows how even a small false positive rate can
make it difficult to interpret the results of tests for rare conditions.

12.2 Random variables
A random variable X is a variable that takes on particular values randomly.
This means that for each possible value x, there is an event [X = x] with
some probability of occurring that corresponds to X (the random variable,
usually written as an upper-case letter) taking on the value x (some fixed
value). Formally, a random variable X is really a function X(ω) of the
outcome ω that occurs, but we save a lot of ink by leaving out ω.4

12.2.1 Examples of random variables

• Indicator variables: The indicator variable for an event A is a vari-
able X that is 1 if A occurs and 0 if it doesn’t (i.e., X(ω) = 1 if ω ∈ A
and 0 otherwise). There are many conventions out there for writing
indicator variables. I am partial to 1A, but you may also see them
written using the Greek letter chi (e.g. χA) or by abusing the bracket
notation for events (e.g., [A], [Y 2 > 3], [all six coins come up heads]).

• Functions of random variables: Any function you are likely to run
across of a random variable or random variables is a random variable.
If X and Y are random variables, X+Y , XY , and logX are all random
variables.

• Counts of events: Flip a fair coin n times and let X be the number of
times it comes up heads. Then X is an integer-valued random variable.

4For some spaces, not all functions X(ω) work as random variables, because the events
[X = x] might not be measurable with respect to F . We will generally not run into these
issues.

CHAPTER 12. PROBABILITY THEORY 234

• Random sets and structures: Suppose that we have a set T of n
elements, and we pick out a subset U by flipping an independent fair
coin for each element to decide whether to include it. Then U is a
set-valued random variable. Or we could consider the infinite sequence
X0, X1, X2, . . . , where X0 = 0 and Xn+1 is either Xn + 1 or Xn − 1,
depending on the result of independent fair coin flip. Then we can
think of the entire sequence X as a sequence-valued random variable.

12.2.2 The distribution of a random variable

The distribution of a random variable describes the probability that it
takes on various values. For real-valued random variables, the distribution
function or cumulative distribution function is a function F (x) =
Pr [X ≤ x]. This allows for very general distributions—for example, a variable
that is uniform on [0, 1] can be specified by F (x) = x when 0 ≤ x ≤ 1, and 0 or
1 as appropriate outside this interval—but for discrete random variables
that take on only countably many possible values, this is usually more power
than we need.

For discrete variables, the distribution is most easily described by just
giving the probability mass function Pr [X = x] for each possible value x.
If we need to, it’s not too hard to recover the distribution function from the
mass function (or vice versa). So we will often cheat a bit and treat a mass
function as specifying a distribution even if it isn’t technically a distribution
function.

Typically, if we know the distribution of a random variable, we don’t
bother worrying about what the underlying probability space is. The reason
for this is we can just take Ω to be the range of the random variable, and
define Pr [ω] for each ω in Ω to be Pr [X = ω]. For example, a six-sided
die corresponds to taking Ω = {1, 2, 3, 4, 5, 6}, assigning Pr [ω] = 1/6 for all
ω, and letting X(ω) = ω. This will give the probabilities for any events
involving X that we would have gotten on whatever original probability
space X might have been defined on.

The same thing works if we have multiple random variables, but now
we let each point in the space be a tuple that gives the values of all of
the variables. Specifying the probability in this case is done using a joint
distribution (see below).

12.2.2.1 Some standard distributions

Here are some common distributions for a random variable X:

CHAPTER 12. PROBABILITY THEORY 235

• Bernoulli distribution: Pr [X = 1] = p, Pr [X = 0] = q, where p is
a parameter of the distribution and q = 1− p. This corresponds to a
single biased coin-flip.

• Binomial distribution: Pr [X = k] =
(n
k

)
pkq(n−k), where n and p are

parameters of the distribution and q = 1− p. This corresponds to the
sum of n biased coin-flips.

• Geometric distribution: Pr [X = k] = qkp, where p is a parameter
of the distribution and q is again equal to 1− p. This corresponds to
number of tails we flip before we get the first head in a sequence of
biased coin-flips.

• Poisson distribution: Pr [X = k] = e−λλk/k!. This is what happens
to a binomial distribution when we make p = λ/n and then take the
limit as n goes to infinity. We can think of it as counting the number
of events that occur in one time unit if the events occur at a constant
continuous rate that averages λ events per time unit. The canonical
example is radioactive decay.

• Uniform distribution: For the uniform distribution on [a, b], the
distribution function F of X is given by F (x) = 0 when x ≤ a, (x −
a)/(b − a) when a ≤ x ≤ b, and 1 when b ≤ x, where a and b are
parameters of the distribution. This is a continuous random variable
that has equal probability of landing anywhere in the [a, b] interval.
The term uniform distribution may also refer to a uniform distribution
on a finite set S; this assigns Pr[X = x] = 1

|S| when x is in S and 0
otherwise. As a distribution function, F (x) is the rather discontinuous
function |{y ∈ S | y ≤ x}|/|S|.

• Normal distribution: The normal distribution function is given by

Φ(x) = 1√
2π

∫ x

−∞
e−x

2/2 dx.

This corresponds to another limit of the binomial distribution, where
now we fix p = 1/2 but compute X−n/2√

n
to converge to a single fixed

distribution as n goes to infinity. The normal distribution shows up
(possibly scaled and shifted) whenever we have a sum of many inde-
pendent, identically distributed random variables: this is the Central
Limit Theorem, and is the reason why much of statistics works, and
why we can represent 0 and 1 bits using buckets of jumpy randomly-
positioned electrons.

CHAPTER 12. PROBABILITY THEORY 236

12.2.2.2 Joint distributions

Two or more random variables can be described using a joint distribution.
For discrete random variables, we often represent this as a joint probability
mass function Pr [X = x ∧ Y = y] for all fixed values x and y, or more
generally Pr [∀i : Xi = xi]. For continuous random variables, we may instead
need to use a joint distribution function F (x1, . . . , xn) = Pr [∀i : Xi ≤ xi].

Given a joint distribution on X and Y , we can recover the distribution on
X or Y individually by summing up cases: Pr [X = x] =

∑
y Pr [X = x ∧ Y = y]

(for discrete variables), or Pr [X ≤ x] = limy→∞ Pr [X ≤ x ∧ Y ≤ y] (for
more general variables). The distribution of X obtained in this way is called
a marginal distribution of the original joint distribution. In general, we
can’t go in the other direction, because just knowing the marginal distribu-
tions doesn’t tell us how the random variables might be dependent on each
other.

Examples

• Let X and Y be six-sided dice. Then Pr [X = x ∧ Y = y] = 1/36 for
all values of x and y in {1, 2, 3, 4, 5, 6}. The underlying probability
space consists of all pairs (x, y) in {1, 2, 3, 4, 6} × {1, 2, 3, 4, 5, 6}.

• LetX be a six-sided die and let Y = 7−X. Then Pr [X = x ∧ Y = y] =
1/6 if 1 ≤ x ≤ 6 and y = 7 − x, and 0 otherwise. The underlying
probability space is most easily described by including just six points for
the X values, although we could also do {1, 2, 3, 4, 5, 6}×{1, 2, 3, 4, 5, 6}
as in the previous case, just assigning probability 0 to most of the
points. However, even though the joint distribution is very different
from the previous case, the marginal distributions of X and Y are
exactly the same as before: each of X and Y takes on all values in
{1, 2, 3, 4, 5, 6} with equal probability.

12.2.3 Independence of random variables

The difference between the two preceding examples is that in the first case,
X and Y are independent, and in the second case, they aren’t.

Two random variables X and Y are independent if any pair of events
of the form X ∈ A, Y ∈ B are independent. For discrete random variables,
it is enough to show that Pr [X = x ∧ Y = y] = Pr [X = x] · Pr [Y = y], or
in other words that the events [X = x] and [Y = y] are independent for all
values x and y. For continuous random variables, the corresponding equation

CHAPTER 12. PROBABILITY THEORY 237

is Pr [X ≤ x ∧ Y ≤ y] = Pr [X ≤ x] ·Pr [Y ≤ y]. In practice, we will typically
either be told that two random variables are independent or deduce it from
the fact that they arise from separated physical processes.

12.2.3.1 Examples

• Roll two six-sided dice, and let X and Y be the values of the dice. By
convention we assume that these values are independent. This means
for example that Pr [X ∈ {1, 2, 3} ∧ Y ∈ {1, 2, 3}] = Pr [X ∈ {1, 2, 3}] ·
Pr [Y ∈ {1, 2, 3}] = (1/2)(1/2) = 1/4, which is a slightly easier com-
putation than counting up the 9 cases (and then arguing that each
occurs with probability (1/6)2, which requires knowing that X and Y
are independent).

• Take the same X and Y , and let Z = X + Y . Now Z and X are not
independent, because Pr [X = 1 ∧ Z = 12] = 0, which is not equal to
Pr [X = 1] · Pr [Z = 12] = (1/6)(1/36) = 1/216.

• Place two radioactive sources on opposite sides of the Earth, and let X
and Y be the number of radioactive decay events in each source during
some 10 millisecond interval. Since the sources are 42 milliseconds away
from each other at the speed of light, we can assert that either X and
Y are independent, or the world doesn’t behave the way the physicists
think it does. This is an example of variables being independent because
they are physically independent.

• Roll one six-sided die X, and let Y = dX/2e and Z = X mod 2. Then
Y and Z are independent, even though they are generated using the
same physical process.

12.2.3.2 Independence of many random variables

In general, if we have a collection of random variables Xi, we say that
they are all independent if the joint distribution is the product of the
marginal distributions, i.e., if Pr [∀i : Xi ≤ xi] =

∏
i Pr [Xi ≤ xi]. It may be

that a collection of random variables is not independent even though all
subcollections are.

For example, let X and Y be fair coin-flips, and let Z = X ⊕ Y . Then
any two of X, Y , and Z are independent, but the three variables X, Y , and
Z are not independent, because Pr [X = 0 ∧ Y = 0 ∧ Z = 0] = 1/4 instead
of 1/8 as one would get by taking the product of the marginal probabilities.

CHAPTER 12. PROBABILITY THEORY 238

Since we can compute the joint distribution from the marginal distri-
butions for independent variables, we will often just specify the marginal
distributions and declare that a collection of random variables are indepen-
dent. This implicitly gives us an underlying probability space consisting of
all sequences of values for the variables.

12.2.4 The expectation of a random variable

For a real-valued random variable X, its expectation E [X] (sometimes just
EX) is its average value, weighted by probability.5 For discrete random
variables, the expectation is defined by

E [X] =
∑
x

xPr [X = x] .

For a continuous random variable with distribution function F (x), the
expectation is defined by

E [X] =
∫ ∞
−∞

x dF (x).

The integral here is a Lebesgue-Stieltjes integral, which generalizes the
usual integral for continuous F (x) by doing the right thing if F (x) jumps due
to some x that occurs with nonzero probability. We will avoid thinking about
this by mostly worrying about expectations for discrete random variables.

Example (discrete variable) Let X be the number rolled with a fair
six-sided die. Then E [X] = (1/6)(1 + 2 + 3 + 4 + 5 + 6) = 31

2 .

Example (unbounded discrete variable) Let X be a geometric random
variable with parameter p. This means that Pr [X = k] = qkp, where as
usual q = 1− p. Then E[X] =

∑∞
k=0 kq

kp = p
∑∞
k=0 kq

k = p · q
(1−q)2 =

pq
p2 = q

p = 1−p
p = 1

p − 1.

Expectation is a way to summarize the distribution of a random variable
without giving all the details. If you take the average of many independent
copies of a random variable, you will be likely to get a value close to the
expectation. Expectations are also used in decision theory to compare
different choices. For example, given a choice between a 50% chance of

5Technically, this will work for any values we can add and multiply by probabilities.
So if X is actually a vector in R3 (for example), we can talk about the expectation of X,
which in some sense will be the average position of the location given by X.

CHAPTER 12. PROBABILITY THEORY 239

winning $100 (expected value: $50) and a 20% chance of winning $1000
(expected value: $200), a rational decision maker would take the second
option. Whether ordinary human beings correspond to an economist’s notion
of a rational decision maker often depends on other details of the situation.

Terminology note: If you hear somebody say that some random variable
X takes on the value z on average, this usually means that E [X] = z.

12.2.4.1 Variables without expectations

If a random variable has a particularly annoying distribution, it may not
have a finite expectation, even thought the variable itself takes on only finite
values. This happens if the sum for the expectation diverges.

For example, suppose I start with a dollar, and double my money every
time a fair coin-flip comes up heads. If the coin comes up tails, I keep
whatever I have at that point. What is my expected wealth at the end of
this process?

Let X be the number of times I get heads. Then X is just a geometric
random variable with p = 1/2, so Pr [X = k] = (1− (1/2))k(1/2)k = 2−k−1.
My wealth is also a random variable: 2X . If we try to compute E

[
2X
]
, we

get

E[2X] =
∞∑
k=0

2k Pr[X = k]

=
∞∑
k=0

2k · 2−k−1

=
∞∑
k=0

1
2 ,

which diverges. Typically we say that a random variable like this has no
expected value, although sometimes you will see people writing E

[
2X
]

=∞.

(For an even nastier case, consider what happens with E
[
(−2)X

]
.)

12.2.4.2 Expectation of a sum

The expectation operator is linear: this means that E [X + Y] = E [X] +
E [Y] and E [aX] = aE [X] when a is a constant. This fact holds for all
random variables X and Y , whether they are independent or not, and is not

CHAPTER 12. PROBABILITY THEORY 240

hard to prove for discrete probability spaces:

E [aX + Y] =
∑
x,y

(ax+ y) Pr [X = x ∧ Y = x]

= a
∑
x,y

xPr [X = x ∧ Y = x] +
∑
x,y

yPr [X = x ∧ Y = x]

= a
∑
x

x
∑
y

Pr [X = x ∧ Y = x] +
∑
y

y
∑
x

Pr [X = x ∧ Y = x]

= a
∑
x

xPr [X = x] +
∑
y

yPr [Y = y]

= aE [X] + E [Y] .

Linearity of expectation makes computing many expectations easy. Ex-
ample: Flip a fair coin n times, and let X be the number of heads. What is
E [X]? We can solve this problem by letting Xi be the indicator vari-
able for the event “coin i came up heads.” Then X =

∑n
i=1Xi and

E [X] = E [
∑n
i=1Xi] =

∑n
i=1 E [Xi] =

∑n
i=1

1
2 = n

2 . In principle it is possible
to calculate the same value from the distribution of X (this involves a lot of
binomial coefficients), but linearity of expectation is much easier.

Example Choose a random permutation π, i.e., a random bijection from
{1 . . . n} to itself. What is the expected number of values i for which π(i) = i?

Let Xi be the indicator variable for the event that π(i) = i. Then we are
looking for E [X1 +X2 + . . . Xn] = E [X1] + E [X2] + . . .E [Xn]. But E [Xi] is
just 1/n for each i, so the sum is n(1/n) = 1. Calculating this by computing
Pr [

∑n
i=1Xi = x] first would be very painful.

12.2.4.3 Expectation of a product

For products of random variables, the situation is more complicated. Here
the rule is that E [XY] = E [X] · E [Y] if X and Y are independent. But if
X and Y are not independent, the expectation of their product can’t be
computed without considering their joint distribution.

For example: Roll two dice and take their product. What value do we
get on average? The product formula gives E [XY] = E [X] E [Y] = (7/2)2 =
(49/4) = 121

4 . We could also calculate this directly by summing over all 36
cases, but it would take a while.

Alternatively, roll one die and multiply it by itself. Now what value do
we get on average? Here we are no longer dealing with independent random
variables, so we have to do it the hard way: E

[
X2] = (12 + 22 + 32 + 42 +

CHAPTER 12. PROBABILITY THEORY 241

52 + 62)/6 = 91/6 = 151
6 . This is substantially higher than when the dice

are uncorrelated. (Exercise: How can you rig the second die so it still comes
up with each value 1

6 of the time but minimizes E [XY]?)
We can prove the product rule without too much trouble for discrete

random variables. The easiest way is to start from the right-hand side.

E [X] · E [Y] =
(∑

x

xPr [X = x]
)(∑

y

yPr [Y = y]
)

=
∑
x,y

xyPr [X = x] Pr [Y = y]

=
∑
z

z

(∑
x,y,xy=z

Pr [X = x] Pr [Y = y]
)

=
∑
z

z

(∑
x,y,xy=z

Pr [X = x ∧ Y = y]
)

=
∑
z

z Pr [XY = z]

= E [XY] .

Here we use independence in going from Pr [X = x] Pr [Y = y] to Pr [X = x ∧ Y = y]
and use the union rule to convert the x, y sum into Pr [XY = z].

12.2.4.4 Conditional expectation

Like conditional probability, there is also a notion of conditional expecta-
tion. The simplest version of conditional expectation conditions on a single
event A, is written E [X | A], and is defined for discrete random variables by

E [X | A] =
∑
x

xPr [X = x | A] .

This is exactly the same as ordinary expectation except that the proba-
bilities are now all conditioned on A.

To take a simple example, consider the expected value of a six-sided die
conditioned on not rolling a 1. The conditional probability of getting 1 is
now 0, and the conditional probability of each of the remaining 5 values is
1/5, so we get (1/5)(2 + 3 + 4 + 5 + 6) = 4.

Conditional expectation acts very much like regular expectation, so for
example we have E [aX + bY | A] = aE [X | A] + bE [Y | A].

One of the most useful applications of conditional expectation is that it
allows computing (unconditional) expectations by case analysis, using the

CHAPTER 12. PROBABILITY THEORY 242

fact that

E [X] = E [X | A] Pr [A] + E [X | ¬A] Pr [¬A] .

or, more generally,

E [X] =
∑
i

E [X | Ai] Pr [Ai]

when A1, A2, . . . are disjoint events whose union is the entire probability
space Ω. This is the expectation analog of the law of total probability.

Examples

• I have a 50% chance of reaching the top of Mt Everest, where Sir
Edmund Hilary and Tenzing Norgay hid somewhere between 0 and 10
kilograms of gold (a random variable with uniform distribution). How
much gold do I expect to bring home? Compute

E [X] = E [X | reached the top] Pr [reached the top] + E [X | didn’t] Pr [didn’t]
= 5 · 0.5 + 0 · 0.5 = 2.5.

• Suppose I flip a coin that comes up heads with probability p until I
get heads. How many times on average do I flip the coin?
We’ll let X be the number of coin flips. Conditioning on whether
the coin comes up heads on the first flip gives E [X] = 1 · p + (1 +
E [X ′]) · (1− p), where X ′ is random variable counting the number of
coin-flips needed to get heads ignoring the first coin-flip. But since X ′
has the same distribution as X, we get E [X] = p+(1−p)(1+E [X]) or
E [X] = p+(1−p)

p = 1/p. So a fair coin must be flipped twice on average
to get a head, which is about what we’d expect if we hadn’t thought
about it much.

• Suppose I have my experimental test subjects complete a task that gets
scored on a scale of 0 to 100. I decide to test whether rewarding success
is a better strategy for improving outcomes than punishing failure. So
for any subject that scores high than 50, I give them a chocolate bar.
For any subject that scores lower than 50, I give them an electric shock.
(Students who score exactly 50 get nothing.) I then have them each
perform the task a second time and measure the average change in
their scores. What happens?

CHAPTER 12. PROBABILITY THEORY 243

Let’s suppose that there is no effect whatsoever of my rewards and
punishments, and that each test subject obtains each possible score with
equal probability 1/101. Now let’s calculate the average improvement
for test subjects who initially score less than 50 or greater than 50.
Call the outcome on the first test X and the outcome on the second
test Y . The change in the score is then Y −X.
In the first case, we are computing E [Y −X | X < 50]. This is the same
as E [Y | X < 50] − E [X | X < 50] = E [Y] − E [X | X < 50] = 50 −
24.5 = +25.5. So punishing failure produces a 25.5 point improvement
on average.
In the second case, we are computing E [Y −X | X > 50]. This is the
same as E [Y | X > 50] − E [X | X > 50] = E [Y] − E [X | X > 50] =
50− 75.5 = −25.5. So rewarding success produces a 25.5 point decline
on average.
Clearly this suggests that we punish failure if we want improvements
and reward success if we want backsliding. This is intuitively correct:
punishing failure encourages our slacker test subjects to do better next
time, while rewarding success just makes them lazy and complacent.
But since the test outcomes don’t depend on anything we are doing,
we get exactly the same answer if we reward failure and punish success:
in the former case, a +25.5 point average change, in the later a −25.5
point average change. This is also intuitively correct: rewarding failure
makes our subjects like the test so that they will try to do better
next time, while punishing success makes them feel that it isn’t worth
it. From this we learn that our intuitions6 provide powerful tools for
rationalizing almost any outcome in terms of the good or bad behavior
of our test subjects. A more careful analysis shows that we performed
the wrong comparison, and we are the victim of regression to the
mean. This phenomenon was one of several now-notorious cognitive
biases described in a famous paper by Tversky and Kahneman [TK74].
For a real-world example of how similar problems can arise in processing
data, the United States Bureau of Labor Statistics defines a small
business as any company with 500 or fewer employees. So if a company
has 400 employees in 2007, 600 in 2008, and 400 in 2009, then we
just saw a net creation of 200 new jobs by a small business in 2007,
followed by the destruction of 200 jobs by a large business in 2008. It
has been argued that this effect accounts for much of the observed fact

6OK, my intuitions.

CHAPTER 12. PROBABILITY THEORY 244

that small businesses generate proportionally more new jobs than large
ones, although the details are tricky [NWZ11].

12.2.4.5 Conditioning on a random variable

There is a more general notion of conditional expectation for random variables,
where the conditioning is done on some other random variable Y . Unlike
E [X | A], which is a constant, the expected value of X conditioned on Y ,
written E [X | Y], is itself a random variable: when Y = y, it takes on the
value E [X | Y = y].

Here’s a simple example. Let’s compute E [X + Y | X] whereX and Y are
the values of independent six-sided dice. WhenX = x, E [E [X + Y | X] | X = x] =
E [X + Y | X = x] = x+ E [Y] = x+ 7/2. For the full random variable we
can write E [X + Y | X] = X + 7/2.

Another way to get the result in the preceding example is to use some
general facts about conditional expectation:

• E [aX + bY | Z] = aE [X | Z] + bE [Y | Z]. This is the conditional-
expectation version of linearity of expectation.

• E [X | X] = X. This is immediate from the definition, since E [X | X = x] =
x.

• If X and Y are independent, then E [Y | X] = E [Y]. The intuition
is that knowing the value of X gives no information about Y , so
E [Y]X = x = E [Y] for any x in the range of X. (To do this for-
mally requires using the fact that Pr [Y = y | X = x] = Pr[Y=y∧X=x]

Pr[X=x] =
Pr[Y=y] Pr[X=x]

Pr[X=x] = Pr [Y = y], provided X and Y are independent and
Pr [X = x] 6= 0.)

• Also useful: E [E [X | Y]] = E [X]. Averaging a second time removes
all dependence on Y.

These in principle allow us to do very complicated calculations involving
conditional expectation.

Some examples:

• Let X and Y be the values of independent six-sided dice. What is
E [X | X + Y]? Here we observe that X + Y = E [X + Y | X + Y] =
E [X | X + Y] + E [Y | X + Y] = 2 E [X | X + Y] by symmetry. So
E [X | X + Y] = (X + Y)/2. This is pretty much what we’d expect:
on average, half the total value is supplied by one of the dice. (It also

CHAPTER 12. PROBABILITY THEORY 245

works well for extreme cases like X + Y = 12 or X + Y = 2, giving a
quick check on the formula.)

• What is E
[
(X + Y)2 ∣∣ X] when X and Y are independent? Compute

E
[
(X + Y)2 ∣∣ X] = E

[
X2 ∣∣ X] + 2 E [XY | X] + E

[
Y 2 ∣∣ X] = X2 +

2X E [Y] + E
[
Y 2]. For example, if X and Y are independent six-sided

dice we have E
[
(X + Y)2 ∣∣ X] = X2 + 7X + 91/6, so if you are rolling

the dice one at a time and the first one comes up 5, you can expect on
average to get a squared total of 25 + 35 + 91/6 = 751

6 . But if the first
one comes up 1, you only get 1 + 7 + 91/6 = 231

6 on average.

12.2.5 Markov’s inequality

Knowing the expectation of a random variable gives you some information
about it, but different random variables may have the same expectation but
very different behavior: consider, for example, the random variable X that is
0 with probability 1/2 and 1 with probability 1/2 and the random variable Y
that is 1/2 with probability 1. In some cases we don’t care about the average
value of a variable so much as its likelihood of reaching some extreme value:
for example, if my feet are encased in cement blocks at the beach, knowing
that the average high tide is only 1 meter is not as important as knowing
whether it ever gets above 2 meters. Markov’s inequality lets us bound
the probability of unusually high values of non-negative random variables as
a function of their expectation. It says that, for any a > 0,

Pr [X > aE [X]] < 1/a.

This can be proved easily using conditional expectations. We have:

E [X] = E [X | X > aE [X]] Pr [X > aE [X]]+E [X]X ≤ aE [X] Pr [X ≤ aE [X]] .

Since X is non-negative, E [X | X ≤ aE [X]] ≥ 0, so subtracting out the last
term on the right-hand side can only make it smaller. This gives:

E [X] ≥ E [X | X > aE [X]] Pr [X > aE [X]]
> aE [X] Pr [X > aE [X]] ,

and dividing both side by aE [X] gives the desired result.
Another version of Markov’s inequality replaces > with ≥:

Pr [X ≥ aE [X]] ≤ 1/a.

The proof is essentially the same.

CHAPTER 12. PROBABILITY THEORY 246

12.2.5.1 Example

Suppose that that all you know about the high tide height X is that
E [X] = 1 meter and X ≥ 0. What can we say about the probability
that X > 2 meters? Using Markov’s inequality, we get Pr [X > 2 meters] =
Pr [X > 2 E [X]] < 1/2.

12.2.5.2 Conditional Markov’s inequality

There is, of course, a conditional version of Markov’s inequality:

Pr [X > aE [X | A] | A] < 1/a.

This version doesn’t get anywhere near as much use as the unconditioned
version, but it may be worth remembering that it exists.

12.2.6 The variance of a random variable

Expectation tells you the average value of a random variable, but it doesn’t
tell you how far from the average the random variable typically gets: the
random variablesX = 0 and Y = ±1, 000, 000, 000, 000 with equal probability
both have expectation 0, though their distributions are very different. Though
it is impossible to summarize everything about the spread of a distribution in
a single number, a useful approximation for many purposes is the variance
Var [X] of a random variable X, which is defined as the expected square of
the deviation from the expectation, or E

[
(X − E [X])2

]
.

Example Let X be 0 or 1 with equal probability. Then E [X] = 1/2, and
(X − E [X])2 is always 1/4. So Var [X] = 1/4.

Example Let X be the value of a fair six-sided die. Then E [X] = 7/2, and
E
[
(X − E [X])2

]
= 1

6
(
(1− 7/2)2 + (2− 7/2)2 + (3− 7/2)2 + · · ·+ (6− 7/2)2) =

35/12.

Computing variance directly from the definition can be tedious. Often it
is easier to compute it from E

[
X2] and E [X]:

Var [X] = E
[
(X − E [X])2

]
= E

[
X2 − 2X E [X] + (E [X])2

]
= E

[
X2
]
− 2 E [X] E [X] + (E [X])2

= E
[
X2
]
− (E [X])2 .

CHAPTER 12. PROBABILITY THEORY 247

The second-to-last step uses linearity of expectation and the fact that
E [X] is a constant.

Example For X being 0 or 1 with equal probability, we have E
[
X2] = 1/2

and (E [X])2 = 1/4, so Var [X] = 1/4.

Example Let’s try the six-sided die again, except this time we’ll use an
n-sided die. We have

Var [X] = E
[
X2
]
− (E [X])2

= 1
n

n∑
i=1

i2 −
(
n+ 1

2

)2

= 1
n
· n(n+ 1)(2n+ 1)

6 − (n+ 1)2

4

= (n+ 1)(2n+ 1)
6 − (n+ 1)2

4 .

When n = 6, this gives 7·13
6 −

49
4 = 35

12 . (Ok, maybe it isn’t always easier).

12.2.6.1 Multiplication by constants

Suppose we are asked to compute the variance of cX, where c is a constant.
We have

Var [cX] = E
[
(cX)2

]
− E [cX]2

= c2 E
[
X2
]
− (cE [X])2

= c2 Var [X] .

So, for example, if X is 0 or 2 with equal probability, Var [X] = 4 ·(1/4) =
1. This is exactly what we expect given that X − E [X] is always ±1.

Another consequence is that Var [−X] = (−1)2 Var [X] = Var [X]. So
variance is not affected by negation.

CHAPTER 12. PROBABILITY THEORY 248

12.2.6.2 The variance of a sum

What is Var [X + Y]? Write

Var [X + Y] = E
[
(X + Y)2

]
− (E [X + Y])2

= E
[
X2
]

+ 2 E [XY] + E
[
Y 2
]
− (E [X])2 − 2 E [X] · E [Y]− (E [Y])2

= (E
[
X2
]
− (E [X])2) + (E

[
Y 2
]
− (E [Y])2) + 2(E [XY]− E [X] · E [Y])

= Var [X] + Var [Y] + 2(E [XY]− E [X] · E [Y]).

The quantity E [XY]− E [X] E [Y] is called the covariance of X and Y
and is written Cov [X,Y]. So we have just shown that

Var [X + Y] = Var [X] + Var [Y] + 2 Cov [X,Y] .

When Cov [X,Y] = 0, or equivalently when E [XY] = E [X] E [Y], X
and Y are said to be uncorrelated and their variances add. This occurs
when X and Y are independent, but may also occur without X and Y being
independent.

For larger sums the corresponding formula is

Var
[
n∑
i=1

Xi

]
=

n∑
i=1

Var [Xi] +
∑
i 6=j

Cov [Xi, Xj] .

This simplifies to Var [
∑
Xi] =

∑
Var [Xi] when the Xi are pairwise

independent, so that each pair of distinct Xi and Xj are independent.
Pairwise independence is implied by independence (but is not equivalent to
it), so this also works for fully independent random variables.

For example, we can use the simplified formula to compute the variance
of the number of heads in n independent fair coin-flips. Let Xi be the
indicator variable for the event that the i-th flip comes up heads and let
X be the sum of the Xi. We have already seen that Var [Xi] = 1/4, so
Var [X] = nVar [Xi] = n/4.

Similarly, if c is a constant, then we can compute Var [X + c] = Var [X] +
Var [c] = Var [X], since (1) E [cX] = cE [X] = E [c] E [X] means that c
(considered as a random variable) and X are uncorrelated, and (2) Var [a] =
E
[
(c− E [c])2

]
= E [0] = 0. So shifting a random variable up or down doesn’t

change its variance.

CHAPTER 12. PROBABILITY THEORY 249

12.2.6.3 Chebyshev’s inequality

Variance is an expectation, so we can use Markov’s inequality on it. The
result is Chebyshev’s inequality, which like Markov’s inequality comes in
two versions:

Pr [|X − E [X]| ≥ r] ≤ Var [X]
r2 ,

Pr [|X − E [X]| > r] < Var [X]
r2 .

Proof. We’ll do the first version. The event |X − E [X]| ≥ r is the same as
the event (X − E [X])2 ≥ r2. By Markov’s inequality, the probability that
this occurs is at most E[(X−E[X])2]

r2 = Var[X]
r2 .

Application: showing that a random variable is close to its expec-
tation This is the usual statistical application.

Example Flip a fair coin n times, and let X be the number of heads. What
is the probability that |X − n/2| > r? Recall that Var [X] = n/4, so
Pr [|X − n/2| > r] < (n/4)/r2 = n/(4r2). So, for example, the chances
of deviating from the average by more than 1000 after 1000000 coin-flips
is less than 1/4.

Example Out of n voters in Saskaloosa County, m plan to vote for Smith for
County Dogcatcher. A polling firm samples k voters (with replacement)
and asks them who they plan to vote for. Suppose that m < n/2;
compute a bound on the probability that the polling firm incorrectly
polls a majority for Smith.
Solution: Let Xi be the indicator variable for a Smith vote when the
i-th voter is polled and let X =

∑
Xi be the total number of pollees

who say they will vote for Smith. Let p = E [Xi] = m/n. Then
Var [Xi] = p − p2, E [X] = kp, and Var [X] = k(p − p2). To get a
majority in the poll, we need X > k/2 or X −E [X] > k/2− kp. Using
Chebyshev’s inequality, this event occurs with probability at most

Var [X]
(k/2− kp)2 = k(p− p2)

(k/2− kp)2

= 1
k
· p− p2

(1/2− p)2 .

Note that the bound decreases as k grows and (for fixed p) does not
depend on n.

CHAPTER 12. PROBABILITY THEORY 250

In practice, statisticians will use a stronger result called the central
limit theorem, which describes the shape of the distribution of the sum of
many independent random variables much more accurately than the bound
from Chebyshev’s inequality. Designers of randomized algorithms are more
likely to use Chernoff bounds.

Application: lower bounds on random variables Unlike Markov’s
inequality, which can only show that a random variable can’t be too big too
often, Chebyshev’s inequality can be used to show that a random variable
can’t be too small, by showing first that its expectation is high and then
that its variance is low. For example, suppose that each of the 1030 oxygen
molecules in the room is close enough to your mouth to inhale with pairwise
independent probability 10−4 (it’s a big room). Then the expected number
of oxygen molecules near your mouth is a healthy 1030 · 10−4 = 1026. What
is the probability that all 1026 of them escape your grasp?

Let Xi be the indicator variable for the event that the i-th molecule is
close enough to inhale. We’ve effectively already used the fact that E [Xi] =
10−4. To use Chebyshev’s inequality, we also need Var [Xi] = E

[
X2
i

]
−

E [Xi]2 = 10−4 − 10−8 ≈ 10−4. So the total variance is about 1030 · 10−4 =
1026 and Chebyshev’s inequality says we have Pr

[
|X − E [X]| ≥ 1026] ≤

1026/(1026)2 = 10−26. So death by failure of statistical mechanics is unlikely
(and the real probability is much much smaller).

But wait! Even a mere 90% drop in O2 levels is going to be enough to
cause problems. What is the probability that this happens? Again we can
calculate Pr [90% drop] ≤ Pr

[
|X − E [X]| ≥ 0.9 · 1026] ≤ 1026/(0.9 ·1026)2 ≈

1.23 · 10−26. So even temporary asphyxiation by statistical mechanics is not
something to worry about.

12.2.7 Probability generating functions

For a discrete random variable X taking on only values in N, we can express
its distribution using a probability generating function or pgf :

F (z) =
∞∑
n=0

Pr [X = n] zn.

These are essentially standard-issue generating functions (see §11.3) with
the additional requirement that all coefficients are non-negative and F (1) = 1.

A trivial example is the pgf for a Bernoulli random variable (1 with
probability p, 0 with probability q = 1− p). Here the pgf is just q + pz.

CHAPTER 12. PROBABILITY THEORY 251

A more complicated example is the pgf for a geometric random variable.
Now we have

∑∞
n=0 q

npzn = p
∑∞
n=0(qz)n = p

1−qz .

12.2.7.1 Sums

A very useful property of pgf’s is that the pgf of a sum of independent random
variables is just the product of the pgf’s of the individual random variables.
The reason for this is essentially the same as for ordinary generating functions:
when we multiply together two terms (Pr [X = n] zn)(Pr [Y = m] zm), we
get Pr [X = n ∧ Y = m] zn+m, and the sum over all the different ways of
decomposing n+m gives all the different ways to get this sum.

So, for example, the pgf of a binomial random variable equal to the sum
of n independent Bernoulli random variables is (q + pz)n (hence the name
“binomial”).

12.2.7.2 Expectation and variance

One nice thing about pgf’s is that the can be used to quickly compute
expectation and variance. For expectation, we have

F ′(z) =
∞∑
n=0

nPr [X = n] zn−1.

So

F ′(1) =
∞∑
n=0

nPr [X = n]

= E [X] .

If we take the second derivative, we get

F ′′(z) =
∞∑
n=0

n(n− 1) Pr [X = n] zn−1

or

F ′′(1) =
∞∑
n=0

n(n− 1) Pr [X = n]

= E [X(X − 1)]

= E
[
X2
]
− E [X] .

So we can recover E
[
X2] as F ′′(1) + F ′(1) and get Var [X] as F ′′(1) +

F ′(1)− (F ′(1))2.

CHAPTER 12. PROBABILITY THEORY 252

Example If X is a Bernoulli random variable with pgf F = (q + pz),
then F ′ = p and F ′′ = 0, giving E [X] = F ′(1) = p and Var [X] =
F ′′(1) + F ′(1)− (F ′(1))2 = 0 + p− p2 = p(1− p) = pq.

Example If X is a binomial random variable with pgf F = (q + pz)n,
then F ′ = n(q + pz)n−1p and F ′′ = n(n − 1)(q + pz)n−2p2, giving
E [X] = F ′(1) = np and Var [X] = F ′′(1) + F ′(1)− (F ′(1))2 = n(n−
1)p2 + np − n2p2 = np − np2 = npq. These values would, of course,
be a lot faster to compute using the formulas for sums of independent
random variables, but it’s nice to see that they work.

Example If X is a geometric random variable with pgf p/(1 − qz), then
F ′ = pq/(1 − qz)2 and F ′′ = 2pq2/(1 − qz)3. So E [X] = F ′(1) =
pq/(1− q)2 = pq/p2 = q/p, and Var [X] = F ′′(1) + F ′(1)− (F ′(1))2 =
2pq2/(1− q)3 + q/p− q2/p2 = 2q2/p2 + q/p− q2/p2 = q2/p2 + q/p. The
variance would probably be a pain to calculate by hand.

Example Let X be a Poisson random variable with rate λ. We claimed
earlier that a Poisson random variable is the limit of a sequence of
binomial random variables where p = λ/n and n goes to infinity, so
(cheating quite a bit) we expect that X’s pgf F = limn→∞((1− λ/n) +
(λ/n)z)n = (1 + (−λ+λz)/n)n = exp(−λ+λz) = exp(−λ)

∑
λnzn/n!.

We can check that the total probability F (1) = exp(−λ+ λ) = e0 = 1,
that the expectation F ′(1) = λ exp(−λ+λ) = λ, and that the variance
F ′′(1) + F ′(1)− (F ′(1))2 = λ2 exp(−λ+ λ) + λ− λ2 = λ. These last
two quantities are what we’d expect if we calculated the expectation
and the variance directly as the limit of taking n Bernoulli random
variables with expectation λ/n and variance (λ/n)(1− λ/n) each.

12.2.8 Summary: effects of operations on expectation and
variance of random variables

E [X + Y] = E [X] + E [Y] Var [X + Y] = Var [X] + Var [Y] + 2 Cov [X,Y]
E [aX] = aE [X] Var [aX] = a2 Var [X]
E [XY] = E [X] E [Y] + Cov [X,Y]

For the second line, a is a constant. None of these formulas assume
independence, although we can drop Cov [X,Y] (because it is zero) whenever
X and Y are independent. There is no simple formula for Var [XY].

CHAPTER 12. PROBABILITY THEORY 253

The expectation and variance of X − Y can be derived from the rules for
addition and multiplication by a constant:

E [X − Y] = E [X + (−Y)]
= E [X] + E [−Y]
= E [X]− E [Y] ,

and

Var [X − Y] = Var [X + (−Y)]
= Var [X] + Var [−Y] + 2 Cov [X,−Y]
= Var [X] + Var [Y]− 2 Cov [X,Y] .

12.2.9 The general case

So far we have only considered discrete random variables, which avoids a lot of
nasty technical issues. In general, a random variable on a probability space
(Ω,F , P) is a function whose domain is Ω that satisfies some extra conditions
on its values that make interesting events involving the random variable
elements of F . Typically the codomain will be the reals or the integers,
although any set is possible. Random variables are generally written as
capital letters with their arguments suppressed: rather than writing X(ω),
where ω ∈ Ω, we write just X.

A technical condition on random variables is that the inverse image of
any measurable subset of the codomain must be in F—in simple terms, if
you can’t nail down ω exactly, being able to tell which element of F you land
in should be enough to determine the value of X(ω). For a discrete random
variables, this just means that X−1(x) ∈ F for each possible value x. For
real-valued random variables, the requirement is that the event [X ≤ x] is in
F for any fixed x. In each case we say that X is measurable with respect
to F (or just “measurable F”).7 Usually we will not worry about this issue
too much, but it may come up if we are varying F to represent different
amounts of information available to different observers (e.g., if X and Y are
the values of two dice, X is measurable to somebody who can see both dice
but not to somebody who can only see the sum of the dice).

The distribution function of a real-valued random variable describes
the probability that it takes on each of its possible values; it is specified

7The detail we are sweeping under the rug here is what makes a subset of the codomain
measurable. The essential idea is that we also have a σ-algebra F ′ on the codomain, and
elements of this codomain σ-algebra are the measurable subsets. The rules for simple
random variables and real-valued random variables come from default choices of σ-algebra.

CHAPTER 12. PROBABILITY THEORY 254

by giving a function F (x) = Pr [X ≤ x]. The reason for using Pr [X ≤ x]
instead of Pr [X = x] is that it allows specifying continuous random variables
such as a random variable that is uniform in the range [0, 1]; this random
variable has a distribution function given by F (x) = x when 0 ≤ x ≤ 1,
F (x) = 0 for x < 0, and F (x) = 1 for x > 1.

For discrete random variables the distribution function will have dis-
continuous jumps at each possible value of the variable. For example, the
distribution function of a variable X that is 0 or 1 with equal probability is
F (x) = 0 for x < 0, 1/2 for 0 ≤ x < 1, and 1 for x ≥ 1.

Knowing the distribution of a random variable tells you what that variable
might do by itself, but doesn’t tell you how it interacts with other random
variables. For example, if X is 0 or 1 with equal probability then X and 1−X
both have the same distribution, but they are connected in a way that is
not true for X and some independent variable Y with the same distribution.
For multiple variables, a joint distribution gives the probability that
each variable takes on a particular value; for example, if X and Y are
two independent uniform samples from the range [0, 1], their distribution
function F (x, y) = Pr [X ≤ x ∧ Y ≤ y] = xy (when 0 ≤ x, y ≤ 1). If instead
Y = 1−X, we get the distribution function F (x, y) = Pr [X ≤ x ∧ Y ≤ y]
equal to x when y ≥ 1− x and 0 when y < 1− x (assuming 0 ≤ x, y ≤ 1).

We’ve seen that for discrete random variables, it is more useful to look at
the probability mass function f(x) = Pr [X = x]. We can always recover
the probability distribution function from the probability mass function if
the latter sums to 1.

12.2.9.1 Densities

If a real-valued random variable is continuous in the sense of having a
distribution function with no jumps (which means that it has probability 0 of
landing on any particular value), we may be able to describe its distribution
by giving a density instead. The density is the derivative of the distribution
function. We can also think of it as a probability at each point defined in the
limit, by taking smaller and smaller regions around the point and dividing
the probability of landing in the region by the size of the region.

For example, the density of a uniform [0, 1] random variable is f(x) = 1
for x in [0, 1], and f(x) = 0 otherwise. For a uniform [0, 2] random variable,
we get a density of 1

2 throughout the [0, 2] interval. The density always
integrates to 1.

Some distributions are easier to describe using densities than using distri-
bution functions. The normal distribution, which is of central importance

CHAPTER 12. PROBABILITY THEORY 255

in statistics, has density
1√
2π
e−x

2/2.

Its distribution function is the integral of this quantity, which has no
closed-form expression.

Joint densities also exist. The joint density of a pair of random variables
with joint distribution function F (x, y) is given by the partial derivative
f(x, y) = ∂2

∂x∂yF (x, y). The intuition here again is that we are approximating
the (zero) probability at a point by taking the probability of a small region
around the point and dividing by the area of the region.

12.2.9.2 Independence

Independence is the same as for discrete random variables: Two random
variables X and Y are independent if any pair of events of the form X ∈ A,
Y ∈ B are independent. For real-valued random variables it is enough to
show that their joint distribution F (x, y) is equal to the product of their
individual distributions FX(x)FY (y). For real-valued random variables with
densities, showing the densities multiply also works. Both methods generalize
in the obvious way to sets of three or more random variables.

12.2.9.3 Expectation

If a continuous random variable has a density f(x), the formula for its
expectation is

E [X] =
∫
xf(x) dx.

For example, let X be a uniform random variable in the range [a, b].
Then f(x) = 1

b−a when a ≤ x ≤ b and 0 otherwise, giving

E [X] =
∫ b

a
x

1
b− a

dx

= x2

2(b− a)

∣∣∣∣∣
b

x=a

= b2 − a2

2(b− a)

= a+ b

2 .

CHAPTER 12. PROBABILITY THEORY 256

For continuous random variables without densities, we land in a rather
swampy end of integration theory. We will not talk about this case if we can
help it. But in each case the expectation depends only on the distribution of
X and not on its relationship to other random variables.

Chapter 13

Linear algebra

Linear algebra is the branch of mathematics that studies vector spaces
and linear transformations between them.

13.1 Vectors and vector spaces
Let’s start with vectors. In the simplest form, a vector consists of a sequence
of n values from some field (see §4.1); for most purposes, this field will be R.
The number of values (called coordinates) in a vector is the dimension
of the vector. The set of all vectors over a given field of a given dimension
(e.g., Rn) forms a vector space, which has a more general definition that
we will give later.

So the idea is that a vector represents a point in an n-dimensional space
represented by its coordinates in some coordinate system. For example, if
we imagine the Earth is flat, we can represent positions on the surface of the
Earth as a latitude and longitude, with the point 〈0, 0〉 representing the origin
of the system at the intersection between the equator (all points of the form
〈0, x〉 and the prime meridian (all points of the form 〈x, 0〉. In this system, the
location of Arthur K. Watson Hall (AKW) would be 〈41.31337,−72.92508〉,
and the location of LC 317 would be 〈41.30854,−72.92967〉. These are both
offsets (measured in degrees) from the origin point 〈0, 0〉.

257

CHAPTER 13. LINEAR ALGEBRA 258

〈0, 0〉

x = 〈3,−1〉

y = 〈1, 2〉

x+ y = 〈4, 1〉

Figure 13.1: Geometric interpretation of vector addition

13.1.1 Relative positions and vector addition

What makes this a little confusing is that we will often use vectors to represent
relative positions as well.1 So if we ask the question “where do I have to go
to get to LC 317 from AKW?”, one answer is to travel −0.00483 degrees in
latitude and −0.00459 degrees in longitude, or, in vector terms, to follow the
relative vector 〈−0.00483,−0.00459〉. This works because we define vector
addition coordinatewise: given two vectors x and y, their sum x+y is defined
by (x+ y)i = xi + yi for each index i. In geometric terms, this has the effect
of constructing a compound vector by laying vectors x and y end-to-end and
drawing a new vector from the start of x to the end of y (see Figure 13.1.)

The correspondence between vectors as absolute positions and vectors
as relative positions comes from fixing an origin 0. If we want to specify an
absolute position (like the location of AKW), we give its position relative to
the origin (the intersection of the equator and the prime meridian). Similarly,
the location of LC 317 can be specified by giving its position relative to the
origin, which we can compute by first going to AKW (〈41.31337,−72.92508〉),
and then adding the offset of LC 317 from AWK (〈−0.00483,−0.00459〉) to
this vector to get the offset directly from the origin (〈41.30854,−72.92967〉).

More generally, we can add together as many vectors as we want, by
adding them coordinate-by-coordinate.

This can be used to reduce the complexity of pirate-treasure instructions:

1. Yargh! Start at the olde hollow tree on Dead Man’s Isle, if ye dare.
1A further complication that we will sidestep completely is that physicists will often use

“vector” to mean both an absolute position and an offset from it—sort of like an edge in a
graph—requiring n coordinates to represent the starting point of the vector and another n
coordinates to represent the ending point. These vectors really do look like arrows at a
particular position in space. Our vectors will be simpler, and always start at the origin.

CHAPTER 13. LINEAR ALGEBRA 259

2. Walk 10 paces north.

3. Walk 5 paces east.

4. Walk 20 paces south.

5. Walk 6
√

2 paces northwest.

6. Dig 8 paces down.

7. Climb back up 6 paces. There be the treasure, argh!

In vector notation, this becomes:

1. 〈0, 0, 0〉

2. + 〈10, 0, 0〉

3. + 〈0, 5, 0〉

4. + 〈−20, 0, 0〉

5. + 〈6,−6, 0〉

6. + 〈0, 0,−8〉

7. + 〈0, 0, 6〉

which sums to 〈−4,−1,−2〉. So we can make our life easier by walking 4
paces south, 1 pace west, and digging only 2 paces down.

13.1.2 Scaling

Vectors may also be scaled by multiplying each of their coordinates by an
element of the base field, called a scalar. For example, if x = 〈−4,−1,−2〉
is the number of paces north, east, and down from the olde hollow tree to
the treasure in the previous example, we can scale x by 2 to get the number
of paces for Short-Legged Pete. This gives

2 〈−4,−1,−2〉 = 〈−8,−2,−4〉 .

CHAPTER 13. LINEAR ALGEBRA 260

13.2 Abstract vector spaces
So far we have looked at vectors in Rn, which can be added together (by
adding their coordinates) and scaled (by multiplying by an element of R).
In the abstract, a vector space is any set that supports these operations,
consistent with certain axioms that make it behave like we expect from our
experience with Rn.

Formally, a vector space consists of vectors, which form an additive
Abelian group,2 and scalars, which can be used to scale vectors through
scalar multiplication. The scalars are assumed to be a field (see §4.1); the
reals R and complex numbers C are typical choices.

Vector addition and scalar multiplication are related by a distributive
law and some consistency requirements. When a and b are scalars, and x
and y are vectors, we have

a(x+ y) = ax+ ay

(a+ b)x = ax+ bx

0x = 0
1x = x

a(bx) = (ab)x

Note that in 0x = 0, the 0 on the left-hand side is a scalar while the 0 on
the right-hand side is a vector.

To avoid confusing between scalars, some writers will mark vectors using
boldface (x) or with a superimposed arrow (~x). Both are annoying enough
to type that we will not use either convention.

It’s not hard to see that the Rn vectors we defined earlier satisfy this
definition. But there are other examples of vector spaces:

• The complex numbers C form a two-dimensional vector space over the
real numbers R. This is because we can represent any complex number
a+ bi as a two-dimensional vector 〈a, b〉, and ordinary complex-number
addition and multiplication by reals behaves just like vector addition
and scalar multiplication in R2: (a+ bi) + (c+ di) = (a+ b) + (c+ d)i,
r(a+ bi) = (ra) + (rb)i.

• If F is a field and S is any set, then the set FS of functions f : S → F is
a vector space, where the scalars are the elements of F , f + g is defined

2This means that there is an addition operation for vectors that is commutative
(x + y = y + x), associative (x + (y + z) = (x + y) + z), and has an identity element 0
(0 + x = x+ 0 = x) and inverses −x (x+ (−x) = 0).

CHAPTER 13. LINEAR ALGEBRA 261

by (f + g)(x) = f(x) + g(x), and af is defined by (af)(x) = a · f(x).
Our usual finite-dimensional real vector spaces are special cases of this,
where S = {1, . . . , n} and F = R.

• The set of all real-valued random variables on a probability space forms
a vector space, with X + Y and aX defined in the usual way. For
discrete probability spaces, this is another special case of FS , since each
random variable is really an element of RΩ. For general probability
spaces, there are some technical conditions with measurability that
mean that we don’t get all of RΩ, but it’s still the case that X +Y and
aX are random variables whenever X and Y are, giving us a vector
space.

• In some application areas, it’s common to consider restricted classes
of functions with some nice properties; for example, we might look at
functions from R to R that are continuous or differentiable, or infinite
sequences N→ R that converge to a finite sum. These restricted classes
of functions are all vector spaces as long as f + g and af are in the
class whenever f and g are.

13.3 Matrices
We’ve seen that a sequence a1, a2, . . . , an is really just a function from some
index set ({1 . . . n} in this case) to some codomain, where ai = a(i) for each i.
What if we have two index sets? Then we have a two-dimensional structure:

A =

A11 A12
A21 A22
A31 A32

where Aij = a(i, j), and the domain of the function is just the cross-

product of the two index sets. Such a structure is called a matrix. The
values Aij are called the elements or entries of the matrix. A sequence of
elements with the same first index is called a row of the matrix; similarly, a
sequence of elements with the same second index is called a column. The
dimension of the matrix specifies the number of rows and the number of
columns: the matrix above has dimension (3, 2), or, less formally, it is a 3× 2
matrix.3 A matrix is square if it has the same number of rows and columns.

Note: The convention in matrix indices is to count from 1 rather than 0.
In programming language terms, matrices are written in FORTRAN.

3The convention for both indices and dimension is that rows come before columns.

CHAPTER 13. LINEAR ALGEBRA 262

Variables representing matrices are usually written with capital letters.
This is to distinguish them from both scalars and vectors.

13.3.1 Interpretation

We can use a matrix any time we want to depict a function of two arguments
(over small finite sets if we want it to fit on one page). A typical example (that
predates the formal notion of a matrix by centuries) is a table of distances
between cities or towns, such as this example from 1807:4

Because distance matrices are symmetric (see below), usually only half
of the matrix is actually printed.

Another example would be a matrix of counts. Suppose we have a set
of destinations D and a set of origins O. For each pair (i, j) ∈ D × O, let
Cij be the number of different ways to travel from j to i. For example, let
origin 1 be Bass Library, origin 2 be AKW, and let destinations 1, 2, and
3 be Bass, AKW, and SML. Then there is 1 way to travel between Bass
and AKW (walk), 1 way to travel from AKW to SML (walk), and 2 ways
to travel from Bass to SML (walk above-ground or below-ground). If we
assume that we are not allowed to stay put, there are 0 ways to go from Bass
to Bass or AKW to AKW, giving the matrix

C =

0 1
1 0
2 1

4The original image is taken from http://www.hertfordshire-genealogy.co.uk/

data/books/books-3/book-0370-cooke-1807.htm. As an exact reproduction of a public
domain document, this image is not subject to copyright in the United States.

http://www.hertfordshire-genealogy.co.uk/data/books/books-3/book-0370-cooke-1807.htm
http://www.hertfordshire-genealogy.co.uk/data/books/books-3/book-0370-cooke-1807.htm

CHAPTER 13. LINEAR ALGEBRA 263

Wherever we have counts, we can also have probabilities. Suppose we
have a particle that moves between positions 1 . . . n by flipping a coin, and
moving up with probability 1

2 and down with probability 1
2 (staying put if it

would otherwise move past the endpoints). We can describe this process by
a transition matrix P whose entry Pij gives the probability of moving to
i starting from j. For example, for n = 4, the transition matrix is

P =

1/2 1/2 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1/2 1/2

.
Finally, the most common use of matrices in linear algebra is to represent

the coefficients of a linear transformation, which we will describe later.

13.3.2 Operations on matrices

Some functions of matrices are useful enough that they have names.

13.3.2.1 Transpose of a matrix

The transpose of a matrix A, written A> or A′, is obtained by reversing
the indices of the original matrix; (A>)ij = Aji for each i and j. This has
the effect of turning rows into columns and vice versa:

A> =

A11 A12
A21 A22
A31 A32

>

=
[
A11 A21 A31
A12 A22 A32

]

If a matrix is equal to its own transpose (i.e., if Aij = Aji for all i and j),
it is said to be symmetric. The transpose of an n×m matrix is an m× n
matrix, so only square matrices can be symmetric.

13.3.2.2 Sum of two matrices

If we have two matrices A and B with the same dimension, we can compute
their sum A+B by the rule (A+B)ij = Aij +Bij . Another way to say this
is that matrix sums are done term-by-term: there is no interaction between
entries with different indices.

CHAPTER 13. LINEAR ALGEBRA 264

For example, suppose we have the matrix of counts C above of ways
of getting between two destinations on the Yale campus. Suppose that
upperclassmen are allowed to also take the secret Science Hill Monorail from
the sub-basement of Bass Library to the sub-basement of AKW. We can get
the total number of ways an upperclassman can get from each origin to each
destination by adding to C a second matrix M giving the paths involving
monorail travel:

C +M =

0 1
1 0
2 1

+

0 0
1 0
0 0

 =

0 1
2 0
2 1

.
13.3.2.3 Product of two matrices

Suppose we are not content to travel once, but have a plan once we reach our
destination in D to travel again to a final destination in some set F . Just as
we constructed the matrix C (or C +M , for monorail-using upperclassmen)
counting the number of ways to go from each point in O to each point in
D, we can construct a matrix Q counting the number of ways to go from
each point in D to each point in F . Can we combine these two matrices to
compute the number of ways to travel O → D → F?

The resulting matrix is known as the product QC. We can compute
each entry in QC by taking a sum of products of entries in Q and C. Observe
that the number of ways to get from k to i via some single intermediate
point j is just QijCjk. To get all possible routes, we have to sum over all
possible intermediate points, giving (QC)ik =

∑
j QijCjk.

This gives the rule for multiplying matrices in general: to get (AB)ik,
sum AijBjk over all intermediate values j. This works only when the number
of columns in A is the same as the number of rows in B (since j has to vary
over the same range in both matrices), i.e., when A is an n×m matrix and
B is an m× s matrix for some n, m, and s. If the dimensions of the matrices
don’t match up like this, the matrix product is undefined. If the dimensions
do match, they are said to be compatible.

For example, let B = (C +M) from the sum example and let A be the
number of ways of getting from each of destinations 1 = Bass, 2 = AKW,
and 3 = SML to final destinations 1 = Heaven and 2 = Hell. After consulting
with appropriate representatives of the Divinity School, we determine that
one can get to either Heaven or Hell from any intermediate destination in
one way by dying (in a state of grace or sin, respectively), but that Bass
Library provides the additional option of getting to Hell by digging. This

CHAPTER 13. LINEAR ALGEBRA 265

gives a matrix

A =
[
1 1 1
2 1 1

]
.

We can now compute the product

A(C+M) =
[
1 1 1
2 1 1

]0 1
2 0
2 1

 =
[
1 · 0 + 1 · 2 + 1 · 2 1 · 1 + 1 · 0 + 1 · 1
2 · 0 + 1 · 2 + 1 · 2 2 · 1 + 1 · 0 + 1 · 1

]
=
[
4 2
4 3

]
.

One special matrix I (for each dimension n× n) has the property that
IA = A and BI = B for all matrices A and B with compatible dimension.
This matrix is known as the identity matrix, and is defined by the rule
Iii = 1 and Iij = 0 for i 6= j. It is not hard to see that in this case
(IA)ij =

∑
k IikAkj = IiiAij = Aij , giving IA = A; a similar computation

shows that BI = B. With a little more effort (omitted here) we can show
that I is the unique matrix with this identity property.

13.3.2.4 The inverse of a matrix

A matrix A is invertible if there exists a matrix A−1 such that AA−1 =
A−1A = I. This is only possible if A is square (because otherwise the
dimensions don’t work) and may not be possible even then. Note that it is
enough to find a matrix such that A−1A = I to show that A is invertible.

To try to invert a matrix, we start with the pair of matrices A, I (where
I is the identity matrix defined above) and multiply both sides of the
pair from the left by a sequence of transformation matrices B1, B2, . . . Bk
until BkBk−1 · · ·B1A = I. At this point the right-hand matrix will be
BkBk−1 · · ·B1 = A−1. (We could just keep track of all the Bi, but it’s easier
to keep track of their product.)

How do we pick the Bi? These will be matrices that (a) multiply some
row by a scalar, (b) add a multiple of one row to another row, or (c) swap
two rows. We’ll use the first kind to make all the diagonal entries equal one,
and the second kind to get zeroes in all the off-diagonal entries. The third
kind will be saved for emergencies, like getting a zero on the diagonal.

That the operations (a), (b), and (c) correspond to multiplying by a
matrix is provable but tedious.5 Given these operations, we can turn any

5The tedious details: To multiply row r by a, use a matrix B with Bii = 1 when i 6= r,
Brr = a, and Bij = 0 for i 6= j; to add a times row r to row s, use a matrix B with Bii = 1
when i 6= r, Brs = a, and Bij = 0 for all other pairs ij; to swap rows r and s, use a matrix
B with Bii = 1 for i 6∈ {r, s}, Brs = Bsr = 1, and Bij = 0 for all other pairs ij.

CHAPTER 13. LINEAR ALGEBRA 266

invertible matrix A into I by working from the top down, rescaling each
row i using a type (a) operation to make Aii = 1, then using a type (b)
operation to subtract Aji times row i from each row j > i to zero out Aji,
then finally repeating the same process starting at the bottom to zero out all
the entries above the diagonal. The only way this can fail is if we hit some
Aii = 0, which we can swap with a nonzero Aji if one exists (using a type
(c) operation). If all the rows from i on down have a zero in the i column,
then the original matrix A is not invertible. This entire process is known as
Gauss-Jordan elimination.

This procedure can be used to solve matrix equations: if AX = B, and
we know A and B, we can compute X by first computing A−1 and then
multiplying X = A−1AX = A−1B. If we are not interested in A−1 for
its own sake, we can simplify things by substituting B for I during the
Gauss-Jordan elimination procedure; at the end, it will be transformed to X.

Example Original A is on the left, I on the right.
Initial matrices: 2 0 1

1 0 1
3 1 2

1 0 0

0 1 0
0 0 1

Divide top row by 2:1 0 1/2

1 0 1
3 1 2

1/2 0 0

0 1 0
0 0 1

Subtract top row from middle row and 3·top row from bottom row:1 0 1/2

0 0 1/2
0 1 1/2

 1/2 0 0
−1/2 1 0
−3/2 0 1

Swap middle and bottom rows:1 0 1/2

0 1 1/2
0 0 1/2

 1/2 0 0
−3/2 0 1
−1/2 1 0

Multiply bottom row by 2:

CHAPTER 13. LINEAR ALGEBRA 267

1 0 1/2
0 1 1/2
0 0 1

 1/2 0 0
−3/2 0 1
−1 2 0

Subtract 1

2 ·bottom row from top and middle rows:1 0 0
0 1 0
0 0 1

 1 −1 0
−1 −1 1
−1 2 0

and we’re done. (It’s probably worth multiplying the original A by the

alleged A−1 to make sure that we didn’t make a mistake.)

13.3.2.5 Scalar multiplication

Suppose we have a matrix A and some constant c. The scalar product cA
is given by the rule (cA)ij = cAij ; in other words, we multiply (or scale) each
entry in A by c. The quantity c in this context is called a scalar; the term
scalar is also used to refer to any other single number that might happen to
be floating around.

Note that if we only have scalars, we can pretend that they are 1 × 1
matrices; a + b = a11 + b11 and ab = a11b11. But this doesn’t work if we
multiply a scalar by a matrix, since cA (where c is considered to be a matrix)
is only defined if A has only one row. Hence the distinction between matrices
and scalars.

13.3.3 Matrix identities

For the most part, matrix operations behave like scalar operations, with a
few important exceptions:

1. Matrix multiplication is only defined for matrices with compatible
dimensions.

2. Matrix multiplication is not commutative: in general, we do not expect
that AB = BA. This is obvious when one or both of A and B is not
square (one of the products is undefined because the dimensions aren’t
compatible), but may also be true even if A and B are both square.

For a simple example of a non-commutative pair of matrices, consider[
1 1
0 1

][
1 −1
1 1

]
=
[
2 0
1 1

]
6=
[
1 −1
1 1

][
1 1
0 1

]
=
[
1 0
1 2

]
.

CHAPTER 13. LINEAR ALGEBRA 268

On the other hand, matrix multiplication is associative: A(BC) = (AB)C.
The proof is by expansion of the definition. First compute

(A(BC))ij =
∑
k

Aik(BC)kj

=
∑
k

∑
m

AikBkmCmj .

Then compute

((AB)C)ij =
∑
m

(AB)imCmj

=
∑
m

∑
k

AikBkmCmj

=
∑
k

∑
m

AikBkmCmj

= (A(BC))ij .

So despite the limitations due to non-compatibility and non-commutativity,
we still have:

Associative laws A + (B + C) = (A + B) + C (easy), (AB)C = A(BC)
(see above). Also works for scalars: c(AB) = (cA)B = A(cB) and
(cd)A = c(dA) = d(cA).

Distributive laws A(B + C) = AB + BC, A(B + C) = AB + AC. Also
works for scalars: c(A+B) = cA+ cB, (c+ d)A = cA+ dA.

Additive identity A + 0 = 0 + A = A, where 0 is the all-zero matrix of
the same dimension as A.

Multiplicative identity AI = A, IA = A, 1A = A,A1 = A, where I is
the identity matrix of appropriate dimension in each case and 1 is the
scalar value 1.

Inverse of a product (AB)−1 = B−1A−1. Proof: (B−1A−1)(AB) =
B−1(A−1A)B = B−1(IB) = B−1B = I, and similarly for (AB)(B−1A−1).

Transposes (A+B)> = A> + B> (easy), (AB)> = B>A> (a little trick-
ier). (A−1)> = (A>)−1, provided A−1 exists (Proof: A>(A−1)> =
(A−1A)> = I> = I).

CHAPTER 13. LINEAR ALGEBRA 269

Using these identities, we can do arithmetic on matrices without know-
ing what their actual entries are, so long as we are careful about non-
commutativity. So for example we can compute

(A+B)2 = (A+B)(A+B) = A2 +AB +BA+B2.

Similarly, if for square A we have

S =
∞∑
n=0

An,

(where A0 = I), we can solve the equation

S = I +AS

by first subtracting AS from both sides to get

IS −AS = I

then applying the distributive law:

(I −A)S = I

and finally multiplying both sides from the left by (I −A)−1 to get

S = (I −A)−1,

assuming I −A is invertible.

13.4 Vectors as matrices
Matrices give us an alternative representation for vectors, which allows us to
extend matrix multiplication to vectors as well. We’ll abuse terminology a
bit by referring to a 1× n or n× 1 matrix as a vector.

A 1 × n matrix is called a row vector for obvious reasons; similarly,
an n × 1 matrix is called a column vector. It’s a good idea when using
a vector as a matrix to specify whether to interpret it as a row vector or
a column vector. You can also convert between the two forms using the
transpose operator x>.

Vectors defined in this way behave exactly like matrices in every respect.
However, they are often written with lowercase letters to distinguish them
from their taller and wider cousins. If this will cause confusion with scalars,

CHAPTER 13. LINEAR ALGEBRA 270

we can disambiguate by writing vectors with a little arrow on top: ~x or in
boldface: x. Often we will just hope it will be obvious from context which
variables represent vectors and which represent scalars, since writing all the
little arrows can take a lot of time.

When extracting individual coordinates from a vector, we omit the boring
index and just write x1, x2, etc. This is done for both row and column vectors,
so rather than write x>i we can just write xi.

Vector addition and scalar multiplication behave exactly the same for
vectors-as-matrices as they did for our definition of vectors-as-sequences.
This justifies treating vectors-as-matrices as just another representation for
vectors.

13.4.1 Length

The length of a vector x, usually written as ‖x‖ or sometimes just |x|, is
defined as

√∑
i xi. The definition follows from the Pythagorean theorem:

‖x‖2 =
∑
x2
i . Because the coordinates are squared, all vectors have non-

negative length, and only the zero vector has length 0.
Length interacts with scalar multiplication exactly as you would expect:

‖cx‖ = |c|·‖x‖. The length of the sum of two vectors depends on how they are
aligned with each other, but the triangle inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖
always holds.6

A special class of vectors are the unit vectors, those vectors x for which
‖x‖ = 1. In geometric terms, these correspond to all the points on the surface
of a radius-1 sphere centered at the origin. Any vector x can be turned into
a unit vector x/‖x‖ by dividing by its length. In two dimensions, the unit
vectors are all of the form

[
cos θ sin θ

]>
, where by convention θ is the angle

from due east measured counterclockwise; this is why traveling 9 units north-
west corresponds to the vector 9

[
cos 135◦ sin 135◦

]>
=
[
−9/
√

2 9/
√

2
]>
.

In one dimension, the unit vectors are
[
±1
]
. There are no unit vectors in

zero dimensions: the unique zero-dimensional vector has length 0.
6These properties make ‖x‖ an example of a norm. A norm is any real-valued function

f on vectors that is positive for all nonzero vectors, zero for the zero vector, and satisfies
the scaling property f(cx) = |c| · f(x) and the triangle inequality f(x+ y) ≤ f(x) + f(y).
Other examples of norms are the `1 norm ‖x‖1 =

∑
i
|xi|, the `∞ norm ‖x‖∞ = maxi|xi|,

and the general `p norm ‖x‖p =
(∑

i
|xi|p

)1/p.
The length of a vector is also known as the `2 norm or Euclidean norm. Like the `1

norm (and even the `∞ norm if you squint at it just right), the `2 norm is a special case of
the `p norm.

CHAPTER 13. LINEAR ALGEBRA 271

13.4.2 Dot products and orthogonality

Suppose we have some column vector x, and we want to know how far x
sends us in a particular direction, where the direction is represented by a
unit column vector e. We can compute this distance (a scalar) by taking the
dot product

e · x = e>x =
∑

eixi.

For example, if x =
[
3 4

]>
and e =

[
1 0

]>
, then the dot product is

−e · x =
[
1 0

] [3
4

]
= 1 · 3 + 0 · 4 = 3.

In this case we see that the
[
1 0

]>
vector conveniently extracts the first

coordinate, which is about what we’d expect. But we can also find out how far
x takes us in the

[
1/
√

2 1/
√

2
]>

direction: this is
[
1/
√

2 1/
√

2
]
·x = 7/

√
2.

By convention, we are allowed to take the dot product of two row vectors
or of a row vector times a column vector or vice versa, provided of course that
the non-boring dimensions match. In each case we transpose as appropriate
to end up with a scalar when we take the matrix product.

Nothing in the definition of the dot product restricts either vector to
be a unit vector. If we compute x · y where x = ce and ‖e‖ = 1, then
we are effectively multiplying e · y by c. It follows that the dot product is
proportional to the length of both of its arguments. This often is expressed
in terms of the geometric formulation, memorized by vector calculus students
since time immemorial:

The dot product of x and y is equal to the product of their lengths times
the cosine of the angle between them.

This formulation is a little misleading, since modern geometers will often
define the angle between two vectors x and y as cos−1

(
x·y
‖x‖·‖y‖

)
, but it gives

a good picture of what is going on. One can also define the dot-product as
the area of the parallelogram with sides x and y, with the complication that
if the parallelogram is flipped upside-down we treat the area as negative.
The simple version in terms of coordinates is harder to get confused about,
so we’ll generally stick with that.

Two vectors are orthogonal if their dot product is zero. In geometric
terms, this occurs when either one or both vectors is the zero vector or when
the angle between them is ±90◦ (since cos(±90◦) = 0). In other words, two
non-zero vectors are orthogonal if and only if they are perpendicular to each
other.

CHAPTER 13. LINEAR ALGEBRA 272

Orthogonal vectors satisfy the Pythagorean theorem: If x ·y = 0, then
‖x+ y‖2 = (x+y)·(x+y) = x·x+x·y+y ·x+y ·y = x·x+y ·y = ‖x‖2 +‖y‖2.
It is not hard to see that the converse is also true: any pair of vectors for
which ‖x+ y‖2 = ‖x‖2 + ‖y‖2 must be orthogonal (at least in Rn).

Orthogonality is also an important property of vectors used to define
coordinate systems, as we will see below.

13.5 Linear combinations and subspaces
A linear combination of a set of vectors x1 . . . xn is any vector that can be
expressed as

∑
cixi for some coefficients ci. The span of the vectors, written

〈x1 . . . xn〉, is the set of all linear combinations of the xi.7
The span of a set of vectors forms a subspace of the vector space, where

a subspace is a set of vectors that is closed under linear combinations. This
is a succinct way of saying that if x and y are in the subspace, so is ax+ by
for any scalars a and b. We can prove this fact easily: if x =

∑
cixi and

y =
∑
dixi, then ax+ by =

∑
(aci + bdi)xi.

A set of vectors x1, x2, . . . , xn is linearly independent if there is no
way to write one of the vectors as a linear combination of the others, i.e.,
if there is no choice of coefficients that makes some xi =

∑
j 6=i cjxj . An

equivalent definition is that there is no choice of coefficients ci such that∑
cixi = 0 and at least one ci is nonzero (to see the equivalence, subtract xi

from both sides of the xi =
∑
cjxj equation).

13.5.1 Bases

If a set of vectors is both (a) linearly independent, and (b) spans the entire
vector space, then we call that set of vectors a basis of the vector space.
An example of a basis is the standard basis consisting of the vectors
[10 . . . 00]>, [01 . . . 00]>, . . . , [00 . . . 10]>, [00 . . . 01]>. This has the additional
nice property of being made of of vectors that are all orthogonal to each
other (making it an orthogonal basis) and of unit length (making it a
normal basis).

A basis that is both orthogonal and normal is called orthonormal.
We like orthonormal bases because we can recover the coefficients of some
arbitrary vector v by taking dot-products. If v =

∑
aixi, then v · xj =

7Technical note: If the set of vectors {xi} is infinite, then we will only permit linear
combinations with a finite number of nonzero coefficients. We will generally not consider
vector spaces big enough for this to be an issue.

CHAPTER 13. LINEAR ALGEBRA 273

∑
ai(xi · xj) = ai, since orthogonality means that xi · xj = 0 when i 6= j, and

normality means xi · xi = ‖xi‖2 = 1.
However, even for non-orthonormal bases it is still the case that any

vector can be written as a unique linear combination of basis elements. This
fact is so useful we will state it as a theorem:

Theorem 13.5.1. If {xi} is a basis for some vector space V , then every
vector y has a unique representation y = a1x1 + a2x2 + · · ·+ anxn.

Proof. Suppose there is some y with more than one representation, i.e., there
are sequences of coefficients ai and bi such that y = a1x1+a2x2+· · ·+anxn =
b1x1 + b2x2 + · · ·+ bnxn. Then 0 = y− y = a1x1 + a2x2 + · · ·+ anxn− b1x1 +
b2x2 + · · ·+ bnxn = (a1 − b1)x1 + (a2 − b2)x2 + · · ·+ (an − bn)xn. But since
the xi are independent, the only way a linear combination of the xi can equal
0 is if all coefficients are 0, i.e., if ai = bi for all i.

Even better, we can do all of our usual vector space arithmetic in terms
of the coefficients ai. For example, if a =

∑
aixi and b =

∑
bixi, then it can

easily be verified that a+ b =
∑

(ai + bi)xi and ca =
∑

(cai)xi.
However, it may be the case that the same vector will have different

representations in different bases. For example, in R2, we could have a basis
B1 = {(1, 0), (0, 1)} and a basis B2 = {(1, 0), (1,−2)}. Because B1 is the
standard basis, the vector (2, 3) is represented as just (2, 3) using basis B1,
but it is represented as (5/2,−3/2) in basis B2.

Both bases above have the same size. This is not an accident; if a vector
space has a finite basis, then all bases have the same size. We’ll state this as
a theorem, too:

Theorem 13.5.2. Let x1 . . . xn and y1 . . . ym be two finite bases of the same
vector space V . Then n = m.

Proof. Assume without loss of generality that n ≤ m. We will show how
to replace elements of the xi basis with elements of the yi basis to produce
a new basis consisting only of y1 . . . yn. Start by considering the sequence
y1, x1 . . . xn. This sequence is not independent since y1 can be expressed as
a linear combination of the xi (they’re a basis). So from Theorem 1 there
is some xi that can be expressed as a linear combination of y1, x1 . . . xi−1.
Swap this xi out to get a new sequence y1, x1 . . . xi−1, xi+1, . . . xn. This new
sequence is also a basis, because (a) any z can be expressed as a linear
combination of these vectors by substituting the expansion of xi into the
expansion of z in the original basis, and (b) it’s independent, because if
there is some nonzero linear combination that produces 0 we can substitute

CHAPTER 13. LINEAR ALGEBRA 274

the expansion of xi to get a nonzero linear combination of the original
basis that produces 0 as well. Now continue by constructing the sequence
y2, y1, x1 . . . xi−1, xi+1, . . . xn, and arguing that some xi′ in this sequence
must be expressible as a combination of earlier terms by Theorem 13.5.1 (it
can’t be y1 because then y2, y1 is not independent), and drop this xi′ . By
repeating this process we can eventually eliminate all the xi, leaving the
basis yn, . . . , y1. But then any yk for k > n would be a linear combination of
this basis, so we must have m = n.

The size of any basis of a vector space is called the dimension of the
space.

13.6 Linear transformations
When we multiply a column vector by a matrix, we transform the vector into
a new vector. This transformation is linear in the sense that A(x + y) =
Ax + Ay and A(cx) = cAx; thus we call it a linear transformation.
Conversely, any linear function f from column vectors to column vectors
can be written as a matrix M such that f(x) = Mx. We can prove this by
decomposing each x using the standard basis.

Theorem 13.6.1. Let f : Rn → Rm be a linear transformation. Then there
is a unique n×m matrix M such that f(x) = Mx for all column vectors x.

Proof. We’ll use the following trick for extracting entries of a matrix by
multiplication. Let M be an n×m matrix, and let ei be a column vector
with eij = 1 if i = j and 0 otherwise.8 Now observe that (ei)>Mej =∑
k e

i
k(Mej)k = (Mej)i =

∑
kMike

j
k = Mij . So given a particular linear f ,

we will now define M by the rule Mij = (ei)>f(ej). It is not hard to see
that this gives f(ej) = Mej for each basis vector j, since multiplying by
(ei)> grabs the i-th coordinate in each case. To show that Mx = f(x) for
all x, decompose each x as

∑
k cke

k. Now compute f(x) = f(
∑
k cke

k) =∑
k ckf(ek) =

∑
k ckM(ek) = M(

∑
k cke

k) = Mx.
8We are abusing notation by not being specific about how long ei is; we will use the

same expression to refer to any column vector with a 1 in the i-th row and zeros everywhere
else. We are also moving what would normally be a subscript up into the superscript
position to leave room for the row index—this is a pretty common trick with vectors and
should not be confused with exponentiation.

CHAPTER 13. LINEAR ALGEBRA 275

13.6.1 Composition

What happens if we compose two linear transformations? We multiply the
corresponding matrices:

(g ◦ f)(x) = g(f(x)) = g(Mfx) = Mg(Mfx) = (MgMf)x.

This gives us another reason why the dimensions have to be compatible
to take a matrix product: If multiplying by an n×m matrix A gives a map
g : Rm → Rn, and multiplying by a k × l matrix B gives a map f : Rl → Rk,
then the composition g ◦ f corresponding to AB only works if m = k.

13.6.2 Role of rows and columns of M in the product Mx

When we multiply a matrix and a column vector, we can think of the matrix
as a sequence of row or column vectors and look at how the column vector
operates on these sequences.

Let Mi· be the i-th row of the matrix (the “·” is a stand-in for the missing
column index). Then we have

(Mx)i =
∑
k

Mikxk = Mi· · x.

So we can think of Mx as a vector of dot-products between the rows of
M and x: [

1 2 3
4 5 6

]1
1
2

 =
[
〈1, 2, 3〉 · 〈1, 1, 2〉
〈4, 5, 6〉 · 〈1, 1, 2〉

]
=
[

9
21

]
.

Alternatively, we can work with the columns M·j of M . Now we have

(Mx)i =
∑
k

Mikxk =
∑
k

(M·k)ixk.

From this we can conclude that Mx is a linear combination of columns
of M : Mx =

∑
k xkM·k. Example:

[
1 2 3
4 5 6

]1
1
2

 = 1
[
1
4

]
+ 1

[
2
5

]
+ 2

[
3
6

]
=
[
1
4

]
+
[
2
5

]
+
[

7
12

]
=
[

9
21

]
.

The set {Mx} for all x is thus equal to the span of the columns of M ; it
is called the column space of M .

CHAPTER 13. LINEAR ALGEBRA 276

For yM , where y is a row vector, similar properties hold: we can think
of yM either as a row vector of dot-products of y with columns of M or as a
weighted sum of rows of M ; the proof follows immediately from the above
facts about a product of a matrix and a column vector and the fact that
yM = (M>y>)>. The span of the rows of M is called the row space of M ,
and equals the set {yM} of all results of multiplying a row vector by M .

13.6.3 Geometric interpretation

Geometrically, linear transformations can be thought of as changing the
basis vectors for a space: they keep the origin in the same place, move the
basis vectors, and rearrange all the other vectors so that they have the same
coordinates in terms of the new basis vectors. These new basis vectors are
easily read off of the matrix representing the linear transformation, since they
are just the columns of the matrix. So in this sense all linear transformations
are transformations from some vector space to the column space of some
matrix.9

This property makes linear transformations popular in graphics, where
they can be used to represent a wide variety of transformations of images.
Below is a picture of an untransformed image (top left) together with two
standard basis vectors labeled x and y. In each of the other images, we have
shifted the basis vectors using a linear transformation, and carried the image
along with it.10

9The situation is slightly more complicated for infinite-dimensional vector spaces, but
we will try to avoid them.

10The thing in the picture is a Pokémon known as a Wooper, which evolves into a
Quagsire at level 20. This evolution is not a linear transformation.

CHAPTER 13. LINEAR ALGEBRA 277

x

y

x

y

x

y

x

y

x

y

x

y

Note that in all of these transformations, the origin stays in the same
place. If you want to move an image, you need to add a vector to everything.
This gives an affine transformation, which is any transformation that can
be written as f(x) = Ax+b for some matrix A and column vector b. One nifty
thing about affine transformations is that—like linear transformations—they
compose to produce new transformations of the same kind: A(Cx+ d) + b =
(AC)x+ (Ad+ b).

Many two-dimensional linear transformations have standard names. The
simplest transformation is scaling, where each axis is scaled by a constant,
but the overall orientation of the image is preserved. In the picture above,
the top right image is scaled by the same constant in both directions and
the second-from-the-bottom image is scaled differently in each direction.

Recall that the product Mx corresponds to taking a weighted sum of
the columns of M , with the weights supplied by the coordinates of x. So in

CHAPTER 13. LINEAR ALGEBRA 278

terms of our basis vectors x and y, we can think of a linear transformation as
specified by a matrix whose columns tell us what vectors for replace x and y
with. In particular, a scaling transformation is represented by a matrix of
the form [

sx 0
0 sy

]
,

where sx is the scale factor for the x (first) coordinate and sy is the scale
factor for the y (second) coordinate. Flips (as in the second image from the
top on the right) are a special case of scaling where one or both of the scale
factors is -1.

A more complicated transformation, as shown in the bottom image, is a
shear. Here the image is shifted by some constant amount in one coordinate
as the other coordinate increases. Its matrix looks like this:[

1 c
0 1

]
.

Here the x vector is preserved: (1, 0) maps to the first column (1, 0), but
the y vector is given a new component in the x direction of c, corresponding
to the shear. If we also flipped or scaled the image at the same time that
we sheared it, we could represent this by putting values other than 1 on the
diagonal.

For a rotation, we will need some trigonometric functions to compute the
new coordinates of the axes as a function of the angle we rotate the image by.
The convention is that we rotate counterclockwise: so in the figure above,
the rotated image is rotated counterclockwise approximately 315◦ or −45◦.
If Θ is the angle of rotation, the rotation matrix is given by[

cos θ − sin θ
sin θ cos θ

]
.

For example, when θ = 0◦, then we have cos θ = 1 and sin θ = 0, giving
the identity matrix. When θ = 90◦, then cos θ = 0 and sin θ = 1, so
we rotate the x axis to the vector (cos θ, sin θ) = (0, 1) and the y axis to
(− sin θ, cos θ) = (−1, 0). This puts the x axis pointing north where the y
axis used to be, and puts the y axis pointing due west.

13.6.4 Rank and inverses

The dimension of the column space of a matrix—or, equivalently, the dimen-
sion of the range of the corresponding linear transformation—is called the

CHAPTER 13. LINEAR ALGEBRA 279

rank. The rank of a linear transformation determines, among other things,
whether it has an inverse.

Theorem 13.6.2. If f : Rn → Rm is a linear transformation with an inverse
f−1, then we can show all of the following:

1. f−1 is also a linear transformation.

2. n = m, and f has full rank, i.e., rank(f) = rank(f−1) = m.

Proof. 1. Let x and y be elements of codomain(f) and let a be a scalar.
Then f(af−1(x)) = a(f(f−1(x))) = ax, implying that f−1(ax) =
af−1(x). Similarly, f(f−1(x) + f−1(y)) = f(f−1(x)) + f(f−1(y)) =
x+ y, giving f−1(x+ y) = f−1(x) + f−1(y). So f−1 is linear.

2. Suppose n < m. Pick any basis ei for Rn, and observe that
{
f(ei)

}
spans range(f) (since we can always decompose x as

∑
aie

i to get
f(x) =

∑
aif(ei)). So the dimension of range(f) is at most n. If

n < m, then range(f) is a proper subset of Rm (otherwise it would
be m-dimensional). This implies f is not surjective and thus has no
inverse. Alternatively, if m < n, use the same argument to show that
any claimed f−1 isn’t. By the same argument, if either f or f−1 does
not have full rank, it’s not surjective.

The converse is also true: If f : Rn → Rn has full rank, it has an inverse.
The proof of this is to observe that if dim(range(f)) = n, then range(f) = Rn
(since Rn has no full-dimensional subspaces). So in particular we can take
any basis

{
ei
}
for Rn and find corresponding

{
xi
}
such that f(xi) = ei. Now

the linear transformation that maps
∑
aie

i to
∑
aix

i is an inverse for f ,
since f(

∑
aix

i) =
∑
aif(xi) =

∑
aie

i.

13.6.5 Projections

Suppose we are given a low-dimensional subspace of some high-dimensional
space (e.g. a line (dimension 1) passing through a plane (dimension 2)), and
we want to find the closest point in the subspace to a given point in the
full space. The process of doing this is called projection, and essentially
consists of finding some point z such that (x− z) is orthogonal to any vector
in the subspace.

Let’s look at the case of projecting onto a line first, then consider the
more general case.

CHAPTER 13. LINEAR ALGEBRA 280

A line consists of all points that are scalar multiples of some fixed vector
b. Given any other vector x, we want to extract all of the parts of x that lie
in the direction of b and throw everything else away. In particular, we want
to find a vector y = cb for some scalar c, such that (x− y) · b = 0. This is is
enough information to solve for c.

We have (x − cb) · b = 0, so x · b = c(b · b) or c = (x · b)/(b · b). So the
projection of x onto the subspace {cb | c ∈ R} is given by y = b(x · b)/(b · b)
or y = b(x · b)/‖b‖2. If b is normal (i.e. if ‖b‖ = 1), then we can leave out
the denominator; this is one reason we like orthonormal bases so much.

Why is this the right choice to minimize distance? Suppose we pick some
other vector db instead. Then the points x, cb, and db form a right triangle
with the right angle at cb, and the distance from x to db is ‖x− db‖ =√
‖x− cb‖2 + ‖cb− db‖2 ≥ ‖x− cb‖.
But now what happens if we want to project onto a larger subspace? For

example, suppose we have a point x in three dimensions and we want to
project it onto some plane of the form {c1b1 + c2b2}, where b1 and b2 span
the plane. Here the natural thing to try is to send x to y = b1(x · b1)/‖b1‖2 +
b2(x · b2)/‖b2‖2. We then want to argue that the vector (x− y) is orthogonal
to any vector of the form c1b1 + c2b2. As before, (x− y) is orthogonal to any
vector in the plane, it’s orthogonal to the difference between the y we picked
and some other z we didn’t pick, so the right-triangle argument again shows
it gives the shortest distance.

Does this work? Let’s calculate: (x−y) · (c1b1 + c2b2) = x · (c1b1 + c2b2)−
(b1(x · b1)/‖b1‖2 + b2(x · b2)/‖b2‖2) · (c1b1 + c2b2) = c1(x · b1 − (b1 · b1)(x ·
b1)/(b1 · b1)) + c2(x · b2− (b2 · b2)(x · b2)/(b2 · b2))− c1(b1 · b2)(x · b1)/(b1 · b1)−
c2(b1 · b2)(x · b2)/(b2 · b2).

The first two terms cancel out very nicely, just as in the one-dimensional
case, but then we are left with a nasty (b1 · b2)(much horrible junk) term at
the end. It didn’t work!

So what do we do? We could repeat our method for the one-dimensional
case and solve for c1 and c2 directly. This is probably a pain in the neck.
Or we can observe that the horrible extra term includes a (b1 · b2) factor,
and if b1 and b2 are orthogonal, it disappears. The moral: We can project

CHAPTER 13. LINEAR ALGEBRA 281

onto a 2-dimensional subspace by projecting independently onto the 1-
dimensional subspace spanned by each basis vector, provided the basis vectors
are orthogonal. And now we have another reason to like orthonormal bases.

This generalizes to subspaces of arbitrary high dimension: as long as the
bi are all orthogonal to each other, the projection of x onto the subspace 〈bi〉
is given by

∑
bi(x · bi)/‖bi‖2. Note that we can always express this as matrix

multiplication by making each row of a matrix B equal to one of the vectors
bi/‖bi‖2; the product Bx then gives the coefficients for the basis elements in
the projection of x, since we have already seen that multiplying a matrix by
a column vector corresponds to taking a dot product with each row. If we
want to recover the projected vector

∑
cibi we can do so by taking advantage

of the fact that multiplying a matrix by a column vector also corresponds to
taking a linear combination of columns: this gives a combined operation of
B>Bx which we can express as a single projection matrix P = B>B. So
projection corresponds to yet another special case of a linear transformation.

One last detail: suppose we aren’t given orthonormal bi but are instead
given some arbitrary non-orthogonal non-normal basis for the subspace.
Then what do we do?

The trick here is to use a technique called Gram-Schmidt orthogonaliza-
tion. This constructs an orthogonal basis from an arbitrary basis by induction.
At each step, we have a collection of orthogonalized vectors b1 . . . bk and some
that we haven’t processed yet ak+1 . . . am; the induction hypothesis says that
the b1 . . . bk vectors are (a) orthogonal and (b) span the same subspace as
a1 . . . ak. The base case is the empty set of basis vectors, which is trivially or-
thogonal and also trivially spans the subspace consisting only of the 0 vector.
We add one new vector to the orthogonalized set by projecting ak+1 to some
point c on the subspace spanned by b1 . . . , bk; we then let bk+1 = ak+1 − c.
This new vector is orthogonal to all of b1 . . . bk by the definition of orthogonal
projection, giving a new, larger orthogonal set b1 . . . bk+1. These vectors
span the same subspace as a1 . . . ak+1 because we can take any vector x
expressed as

∑k+1
i=1 ciai, and rewrite it as

∑k
i=1 cibi + ck+1(c + bk+1), and

in the second term ck+1c reduces to a linear combination of b1 . . . bk; the
converse essentially repeats this argument in reverse. It follows that when
the process completes we have an orthogonal set of vectors b1 . . . bm that
span precisely the same subspace as a1 . . . am, and we have our orthogonal
basis. (But not orthonormal: if we want it to be orthonormal, we divide
each bi by ‖bi‖ as well.)

CHAPTER 13. LINEAR ALGEBRA 282

13.7 Further reading
Linear algebra is a key tool in graphics, scientific computing, robotics, neural
networks, and many other areas of Computer Science. If you do further work
in these areas, you will quickly find that we have not covered anywhere near
enough linear algebra in this course. Your best strategy for remedying this
deficiency may be to take an actual linear algebra course; failing that, a very
approachable introductory text is Linear Algebra and Its Applications, by
Gilbert Strang [Str05]. You can also watch an entire course of linear algebra
lectures through YouTube: http://www.youtube.com/view_play_list?p=
E7DDD91010BC51F8.

Some other useful books on linear algebra:

• Golub and Van Loan, Matrix Computations [GVL12]. Picks up where
Strang leaves off with practical issues in doing computation.

• Halmos, Finite-Dimensional Vector Spaces [Hal58]. Good introduction
to abstract linear algebra: properties of vector spaces without jumping
directly to matrices.

Matlab (which is available on the Zoo machines: type ‘matlab‘ at a shell
prompt) is useful for playing around with operations on matrices. There
are also various non-commercial knockoffs like Scilab or Octave that are
not as comprehensive as Matlab but are adequate for most purposes. Note
that with any of these tools, if you find yourselves doing lots of numerical
computation, it is a good idea to talk to a numerical analyst about round-off
error: the floating-point numbers inside computers are not the same as real
numbers, and if you aren’t careful about how you use them you can get very
strange answers.

http://www.youtube.com/view_play_list?p=E7DDD91010BC51F8
http://www.youtube.com/view_play_list?p=E7DDD91010BC51F8
http://www.mathworks.com
http://www.scilab.org
http://www.octave.org

Chapter 14

Finite fields

Our goal here is to find computationally-useful structures that act enough
like the rational numbers Q or the real numbers R that we can do arithmetic
in them that are small enough that we can describe any element of the
structure uniquely with a finite number of bits. Such structures are called
finite fields.

An example of a finite field is Zp, the integers mod p (see §8.3). These
finite fields are inconvenient for computers, which like to count in bits and
prefer numbers that look like 2n to horrible nasty primes. So we’d really like
finite fields of size 2n for various n, particularly if the operations of addition,
multiplication, etc. have a cheap implementation in terms of sequences of
bits. To get these, we will show how to construct a finite field of size pn for
any prime p and positive integer n, and then let p = 2.

14.1 A magic trick
We will start with a magic trick. Suppose we want to generate a long
sequence of bits that are hard to predict. One way to do this is using a
mechanism known as a linear-feedback shift register or LFSR. There
are many variants of LFSRs. Here is one that generates a sequence that
repeats every 15 bits by keeping track of 4 bits of state, which we think of
as a binary number r3r2r1r0.

To generate each new bit, we execute the following algorithm:

1. Rotate the bits of r left, to get a new number r2r1r0r3.

2. If the former leftmost bit was 1, flip the new leftmost bit.

3. Output the rightmost bit.

283

CHAPTER 14. FINITE FIELDS 284

Here is the algorithm in action, starting with r = 0001:
r rotated r rotated r after flip output

0001 0010 0010 0
0010 0100 0100 0
0100 1000 1000 0
1000 0001 1001 1
1001 0011 1011 1
1011 0111 1111 1
1111 1111 0111 1
0111 1110 1110 0
1110 1101 0101 1
0101 1010 1010 0
1010 0101 1101 1
1101 1011 0011 1
0011 0110 0110 0
0110 1100 1100 0
1100 1001 0001 1
0001 0010 0010 0

After 15 steps, we get back to 0001, having passed through all possible
4-bit values except 0000. The output sequence 000111101011001... has the
property that every 4-bit sequence except 0000 appears starting at one of
the 15 positions, meaning that after seeing any 3 bits (except 000), both bits
are equally likely to be the next bit in the sequence. We thus get a sequence
that is almost as long as possible given we have only 24 possible states, that
is highly unpredictable, and that is cheap to generate. So unpredictable
and cheap, in fact, that the governments of both the United States1 and
Russia2 operate networks of orbital satellites that beam microwaves into our
brains carrying signals generated by linear-feedback shift registers very much
like this one. Similar devices are embedded at the heart of every modern
computer, scrambling all communications between the motherboard and PCI
cards to reduce the likelihood of accidental eavesdropping.

What horrifying deep voodoo makes this work?

14.2 Fields and rings
A field is a set F together with two operations + and · that behave like
addition and multiplication in the rationals or real numbers. Formally, this

1In the form of the Global Positioning System.
2In the form of GLONASS.

CHAPTER 14. FINITE FIELDS 285

means that:
1. Addition is associative: (x+ y) + z = x+ (y + z) for all x, y, z in F .

2. There is an additive identity 0 such that 0 + x = x+ 0 = x for all x
in F .

3. Every x in F has an additive inverse −x such that x + (−x) =
(−x) + x = 0.

4. Addition is commutative: x+ y = y + x for all x, y in F .

5. Multiplication distributes over addition: x · (y + z) = (x · y + x · z)
and (y + z) · x = (y · x+ z · x) for all x, y, z in F .

6. Multiplication is associative: (x · y) · z = x · (y · z) for all x, y, z in F .

7. There is a multiplicative identity 1 such that 1 · x = x · 1 = x for
all x in F .

8. Multiplication is commutative: x · y = y · x for all x, y in F .

9. Every x in F \{0} has amultiplicative inverse x−1 such that x·x−1 =
x−1 · x = 1.

Some structures fail to satisfy all of these axioms but are still interesting
enough to be given names. A structure that satisfies 1–3 is called a group;
1–4 is an abelian group or commutative group; 1–7 is a ring; 1–8 is a
commutative ring. In the case of groups and abelian groups there is only
one operation +. There are also more exotic names for structures satisfying
other subsets of the axioms.3

Some examples of fields: R,Q,C,Zp where p is prime. We will be
particularly interested in Zp, since we are looking for finite fields that can fit
inside a computer.

The integers Z are an example of a commutative ring, as is Zm for
m > 1. Square matrices of fixed dimension greater than 1 are an example of
a non-commutative ring.

3A set with one operation that does not necessarily satisfy any axioms is a magma.
If the operation is associative, it’s a semigroup, and if there is also an identity (but not
necessarily inverses), it’s a monoid. For example, the set of nonempty strings with +
interpreted as concatenation form a semigroup, and throwing in the empty string as well
gives a monoid.

Weaker versions of rings knock out the multiplicative identity (a pseudo-ring or rng)
or negation (a semiring or rig). An example of a semiring that is actually useful is the
(max,+) semiring, which uses max for addition and + (which distributes over max) for
multiplication; this turns out to be handy for representing scheduling problems.

CHAPTER 14. FINITE FIELDS 286

14.3 Polynomials over a field
Any field F generates a polynomial ring F [x] consisting of all polynomials
in the variable x with coefficients in F . For example, if F = Q, some elements
of Q[x] are 3/5, (22/7)x2 + 12, 9003x417 − (32/3)x4 + x2, etc. Addition and
multiplication are done exactly as you’d expect, by applying the distributive
law and combining like terms: (x+1)·(x2+3/5) = x·x2+x·(3/5)+x2+(3/5) =
x3 + x2 + (3/5)x+ (3/5).

The degree deg(p) of a polynomial p in F [x] is the exponent on the
leading term, the term with a nonzero coefficient that has the largest
exponent. Examples: deg(x2 + 1) = 2, deg(17) = 0. For 0, which doesn’t
have any terms with nonzero coefficients, the degree is taken to be −∞.
Degrees add when multiplying polynomials: deg((x2 + 1)(x+ 5)) = deg(x2 +
1) + deg(x+ 5) = 2 + 1 = 3; this is just a consequence of the leading terms in
the polynomials we are multiplying producing the leading term of the new
polynomial. For addition, we have deg(p+ q) ≤ max(deg(p), deg(q)), but we
can’t guarantee equality (maybe the leading terms cancel).

Because F [x] is a ring, we can’t do division the way we do it in a field
like R, but we can do division the way we do it in a ring like Z, leaving a
remainder. The equivalent of the integer division algorithm for Z is:
Theorem 14.3.1 (Division algorithm for polynomials). Given a polynomial
f and a nonzero polynomial g in F [x], there are unique polynomials q and r
such that f = q · g + r and deg(r) < deg(g).
Proof. The proof is by induction on deg(f). If deg(f) < deg(g), let q = 0
and r = f . If deg(f) is larger, let m = deg(f), n = deg(g), and qm−n =
fmg

−1
n . Then qm−nxm−ng is a degree-m polynomial with leading term fm.

Subtracting this from f gives a polynomial f ′ of degree at most m − 1,
and by the induction hypothesis there exist q′, r such that f ′ = q′ · g + r
and deg r < deg g. Let q = qm−nx

m−n + q′; then f = f ′ + qm−nx
m−ng =

(qm−nxm−ng + q′g + r = q · g + r.

The essential idea of the proof is that we are finding q and r using the
same process of long division as we use for integers. For example, in Q[x]:

x+ 1
x+ 2

)
x2 + 3x+ 5
− x2 − 2x

x+ 5
− x− 2

3

CHAPTER 14. FINITE FIELDS 287

From this we get x2 + 3x + 5 = (x + 2)(x − 1) + 3, with deg(3) = 0 <
deg(x+ 2) = 1.

We are going to use division of polynomials to define finite fields by
taking F [x] modulo some well-chosen polynomial, analogously to the way we
can turn Z (a ring) into a field Zp by taking quotients mod p. As long as we
choose the right polynomial, this works in any field.

14.4 Algebraic field extensions
Given a field F , we can make a bigger field by adding in extra elements
that behave in a well-defined and consistent way. An example of this is the
extension of the real numbers R to the complex numbers C by adding i.

The general name for this trick is algebraic field extension or just
field extension, and it works by first constructing the ring of polynomials
F [x] and then smashing it down into a field by taking remainders modulo
some fixed polynomial p(x). For this to work, the polynomial has to to be
irreducible, which mean that p(x) = 0 if and only if x = 0, or equivalently
that p can’t be factored as (x+ a)p′ for some a and p′. This latter definition
makes irreducibility sort of like being prime, and makes this construction
sort of like the construction of Zp.

The fact that the resulting object is a field follows from inheriting all the
commutative ring properties from F [x], plus getting multiplicative inverses
for essentially the same reason as in Zp: we can find them using the extended
Euclidean algorithm applied to polynomials instead of integers (we won’t
prove this).

In the case of the complex numbers C, the construction is C = R[i]/(i2+1).
Because i2 + 1 = 0 has no solution i ∈ R, this makes i2 + 1 an irreducible
polynomial. An element of C is then a degree-1 or less polynomial in R[i],
because these are the only polynomials that survive taking the remainder
mod i2 + 1 intact.

If you’ve used complex numbers before, you were probably taught to
multiply them using the rule i2 = −1, which is a rewriting of i2 + 1 = 0.
This is equivalent to taking remainders: (i + 1)(i + 2) = (i2 + 3i + 2) =
1 · (i2 + 1) + (3i+ 1) = 3i+ 1.

The same thing works for other fields and other irreducible polynomials.
For example, in Z2, the polynomial x2+x+1 is irreducible, because x2+x+1 =
0 has no solution (try plugging in 0 and 1 to see). So we can construct
a new finite field Z2[x]/(x2 + x+ 1) whose elements are polynomials with
coefficients in Z2 with all operations done modulo x2 + x+ 1.

CHAPTER 14. FINITE FIELDS 288

Addition in Z2[x]/(x2+x+1) looks like vector addition:4 (x+1)+(x+1) =
0 · x + 0 = 0, (x + 1) + x = 1, (1) + (x) = (x + 1). Multiplication in
Z2[x]/(x2 + x+ 1) works by first multiplying the polynomials and taking the
remainder mod (x2 +x+1): (x+1) · (x+1) = x2 +1 = 1 · (x2 +x+1)+x = x.
If you don’t want to take remainders, you can instead substitute x+1 for any
occurrence of x2 (just like substituting −1 for i2 in C), since x2 + x+ 1 = 0
implies x2 = −x− 1 = x+ 1 (since −1 = 1 in Z2).

The full multiplication table for this field looks like this:

0 1 x x+ 1
0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

We can see that every nonzero element has an inverse by looking for ones
in the table; e.g. 1·1 = 1 means 1 is its own inverse and x·(x+1) = x2+x = 1
means that x and x+ 1 are inverses of each other.

Here’s the same thing for Z2[x]/(x3 + x+ 1):

0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
0 0 0 0 0 0 0 0 0
1 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
x 0 x x2 x2 + x x+ 1 1 x2 + x+ 1 x2 + 1

x+ 1 0 x+ 1 x2 + x x2 + 1 x2 + x+ 1 x2 1 x
x2 0 x2 x+ 1 x2 + x+ 1 x2 + x x x2 + 1 1

x2 + 1 0 x2 + 1 1 x2 x x2 + x+ 1 x+ 1 x2 + x
x2 + x 0 x2 + x x2 + x+ 1 1 x2 + 1 x+ 1 x x2

x2 + x+ 1 0 x2 + x+ 1 x2 + 1 x 1 x2 + x x2 x+ 1

Note that we now have 23 = 8 elements. In general, if we take Zp[x]
modulo a degree-n polynomial, we will get a field with pn elements. These
turn out to be all the possible finite fields, with exactly one finite field for each
number of the form pn (up to isomorphism, which means that we consider
two fields equivalent if there is a bijection between them that preserves +
and ·). We can refer to a finite field of size pn abstractly as GF (pn), which
is an abbreviation for the Galois field pn.

4This is not an accident: any extension field acts like a vector space over its base field.

CHAPTER 14. FINITE FIELDS 289

14.5 Applications
So what are these things good for?

On the one hand, given an irreducible polynomial p(x) of degree n over
Z2(x), it’s easy to implement arithmetic in Z2[x]/p(x) (and thus GF (2n))
using standard-issue binary integers. The trick is to represent each polynomial∑
aix

i by the integer value a =
∑
ai2i, so that each coefficient ai is just the i-

th bit of a. Adding two polynomials a+b represented in this way corresponds
to computing the bitwise exclusive or of a and b: a^b in programming
languages that inherit their arithmetic syntax from C (i.e., almost everything
except Scheme). Multiplying polynomials is more involved, although it’s
easy for some special cases like multiplying by x, which becomes a left-shift
(a<<1) followed by XORing with the representation of our modulus if we get
a 1 in the n-th place. (The general case is like this but involves doing XORs
of a lot of left-shifted values, depending on the bits in the polynomial we are
multiplying by.)

On the other hand, knowing that we can multiply 7 ≡ x2 + x + 1 by
5 ≡ x2 + 1 and get 6 ≡ x2 + x quickly using C bit operations doesn’t help us
much if this product doesn’t mean anything. For modular arithmetic (§8.3),
we at least have the consolation that 7 · 5 = 6 (mod 29) tells us something
about remainders. In GF (23), what this means is much more mysterious.
This makes it useful—not in contexts where we want multiplication to make
sense—but in contexts where we don’t. These mostly come up in random
number generation and cryptography.

14.5.1 Linear-feedback shift registers

Let’s suppose we generate x0, x1, x2, . . . in Z2/(x4 + x3 + 1), which happens
to be one of the finite fields isomorphic to GF (24). Since there are only
24 − 1 = 15 nonzero elements in GF (24), we can predict that eventually this
sequence will repeat, and in fact we can show that p15 = 1 for any nonzero p
using essentially the same argument as for Fermat’s Little Theorem. So we
will have x0 = x15 = x30 etc. and thus will expect our sequence to repeat
every 15 steps (or possibly some factor of 15, if we are unlucky).

To compute the actual sequence, we could write out full polynomials:
1, x, x2, x3, x3 + 1, x3 +x+ 1, . . . , but this gets tiresome fast. So instead we’d
like to exploit our representation of

∑
aix

i as
∑
ai2i.

Now multiplying by x is equivalent to shifting left (i.e. multiplying by 2)
followed by XORing with 11001, the binary representation of x4 + x3 + 1,
if we get a bit in the x4 place that we need to get rid of. For example, we

CHAPTER 14. FINITE FIELDS 290

might do:

1101 (initial value)
11010 (after shift)
0011 (after XOR with 11001)

or

0110 (initial value)
01100 (after shift)
1100 (no XOR needed)

If we write our initial value as r3r2r1r0, the shift produces a new value
r3r2r1r00. Then XORing with 11001 has three effects: (a) it removes a
leading 1 if present; (b) it sets the rightmost bit to r3; and (c) it flips the
new leftmost bit if r3 = 1. Steps (a) and (b) turn the shift into a rotation.
Step (c) is the mysterious flip from our sequence generator. So in fact what
our magic sequence generator was doing was just computing all the powers
of x in a particular finite field.

As in Zp, these powers of an element bounce around unpredictably, which
makes them a useful (though cryptographically very weak) pseudorandom
number generator. Because high-speed linear-feedback shift registers are
very cheap to implement in hardware, they are used in applications where a
pre-programmed, statistically smooth sequence of bits is needed, as in the
Global Positioning System and to scramble electrical signals in computers to
reduce radio-frequency interference.

14.5.2 Checksums

Shifting an LFSR corresponds to multiplying by x. If we also add 1 from
time to time, we can build any polynomial we like, and get the remainder
mod m; for example, to compute the remainder of 100101 mod 11001 we do

0000 (start with 0)
00001 (shift in 1)
0001 (no XOR)
00010 (shift in 0)
0010 (no XOR)
00100 (shift in 0)
0100 (no XOR)
01001 (shift in 1)
1001 (no XOR)

CHAPTER 14. FINITE FIELDS 291

10010 (shift in 0)
1011 (XOR with 11001)

10111 (shift in 1)
1110 (XOR with 11001)

and we have computed that the remainder of x5 + x3 + 1 mod x4 + x3 + 1 is
x3 + x2 + x.

This is the basis for cyclic redundancy check (CRC) checksums,
which are used to detect accidental corruption of data. The idea is that
we feed our data stream into the LFSR as the coefficients of some gigantic
polynomial, and the checksum summarizing the data is the state when we
are done. Since it’s unlikely that a random sequence of flipped or otherwise
damaged bits would equal 0 mod m, most non-malicious changes to the data
will be visible by producing an incorrect checksum.

14.5.3 Cryptography

GF (2n) can also substitute for Zp in some cryptographic protocols. An
example would be the function f(s) = xs (mod m), which is fairly easy to
compute in Zp and even easier to compute in GF (2n), but which seems to
be hard to invert in both cases. Here we can take advantage of the fast
remainder operation provided by LFSRs to avoid having to do expensive
division in Z.

Appendix A

Assignments

Assignments are typically due Wednesdays at 5:00 pm. Assignments should
be uploaded to Canvas in PDF format. See Appendix G for some suggestions
for how to format your solutions as PDF.

Do not include any identifying information in your submissions.
This will allow grading to be done anonymously.

Make sure that your submissions are readable. You are strongly
advised to use LATEX, Microsoft Word, Google Docs, or similar software to
generate typeset solutions. Scanned or photographed handwritten submis-
sions often turn out badly, and submissions that are difficult for the graders
to read will be penalized.

Sample solutions will appear in this appendix after the assignment is due.
To maintain anonymity of both submitters and graders, questions about
grading should be submitted through Canvas.

A.1 Assignment 1: Due Wednesday, 2017-09-13,
at 5:00 pm

Bureaucratic part

Send me email! My address is james.aspnes@gmail.com.
In your message, include:

1. Your name.

2. Your status: whether you are an undergraduate, grad student, auditor,
etc.

292

mailto:james.aspnes@gmail.com

APPENDIX A. ASSIGNMENTS 293

3. Anything else you’d like to say.

(You will not be graded on the bureaucratic part, but you should do it
anyway.)

A.1.1 A curious proposition

Consider the proposition

((P → Q)→ P)→ Q (A.1.1)

1. Write out a truth table in the style of §2.2.2 to determine for which
assignments of truth values to P and Q this proposition is true.

2. Show how to convert (A.1.1) into conjunctive normal form using stan-
dard logical equivalences.

3. Show how to convert (A.1.1) into disjunctive normal form using stan-
dard logical equivalences.

4. Show that the proposition

P → (Q→ (P → Q)) (A.1.2)

is not logically equivalent to ((P → Q)→ P)→ Q.

Solution

1.
P Q P → Q (P → Q)→ P ((P → Q)→ P)→ Q

0 0 1 0 1
0 1 1 0 1
1 0 0 1 0
1 1 1 1 1

2.

((P → Q)→ P)→ Q ≡ ¬(¬(¬P ∨Q) ∨ P) ∨Q
≡ ((¬P ∨Q) ∧ ¬P) ∨Q
≡ (¬P ∨Q ∨Q) ∧ (¬P ∨Q)
≡ (¬P ∨Q) ∧ (¬P ∨Q)
≡ ¬P ∨Q

APPENDIX A. ASSIGNMENTS 294

This is trivially in conjunctive normal form: it’s an AND of exactly one
OR clause. (We could also have stopped a few steps earlier: nothing
says that CNF can’t include duplicate clauses or variables.)
We could further simplify this expression to P → Q, but then it
wouldn’t be in CNF.

3. In the previous step, we reduced (A.1.1) to ¬P ∨ Q, and observed
that this expression is in conjunctive normal form. But it is also in
disjunctive normal form, since it is an OR of two (trivial) AND-clauses.

4. Here are two ways to do this:

• Using a truth table:

P Q P → Q Q→ (P → Q) P → (Q→ (P → Q))
0 0 1 1 1
0 1 1 1 1
1 0 0 1 1
1 1 1 1 1

We can now observe that the rightmost column doesn’t match the
rightmost column in the truth table for ((P → Q)→ P)→ Q.
• Using logical equivalences:

P → (Q→ (P → Q)) ≡ ¬P ∨ (¬Q ∨ (¬P ∨Q))
≡ (¬P ∨ ¬P) ∨ (¬Q ∨Q)
= ¬P ∨ 1
= 1.

Since we previously established that ((P → Q)→ P)→ Q ≡ ¬P∨
Q 6≡ 1, this shows ((P → Q)→ P)→ Q 6≡ P → (Q→ (P → Q)).

A.1.2 Relations

For this problem, you are given a predicate Pxy that holds if x is a parent of
y, and need to define other family relationships using the tools of first-order
predicate logic (¬, ∧, ∨, =, ∃, ∀, ∃!, etc.). For example, we could define Gxy,
meaning that x is a grandparent of y, using the axiom

Gxy ↔ (∃z : Pxz ∧ Pzy).

For each of the predicates below, give a definition of the predicate based
on P , in the form of an axiom that specifies when the predicate is true.

APPENDIX A. ASSIGNMENTS 295

1. Let Hxy hold if x and y are half siblings, which means that x and y
have exactly one common parent.

2. Let Sxy hold if x and y are full siblings, which means that x and y
have at least two parents in common.

3. Suppose our society practices cousin marriage, where a marriage be-
tween x and y is considered desirable if x and y have exactly one
grandparent in common. Let Mxy hold if this is the case.

4. Let Axy hold if x is an ancestor of y.

Solution

1. Hxy ↔ (∃!z : Pzx∧Pzy). If we want to avoid using ∃!, we can expand
this as Hxy ↔ (∃z : Pzx ∧ Pzy ∧ (∀q : Pqx ∧ Pqy → q = z)).

2. Sxy ↔ (∃z : ∃q : z 6= q ∧ Pzx ∧ Pzy ∧ Pqx ∧ Pqy).

3. Mxy ↔ (∃!g : ∃p : ∃q : Pgp ∧ Ppx ∧ Pgq ∧ Pqy). This can also be
expanded to use ∃ instead of ∃!.

4. This one is done using recursion: Axy ↔ Pxy ∨ (∃z : Axz ∧ Azy).
Replacing at most one of Axz or Azy with Pxz or Pzy (respectively)
also works.

A.1.3 A theory of shirts

The following set of axioms attempts to describe the rules for shirt sizing.
The predicates Sx, Mx, and Lx say that x is small, medium, or large,
respectively, and the predicate Bxy says that x is bigger than y.

S1 : ∃xSx
M1 : ∃xMx

L1 : ∃xLx
BLM : ∀x∀y(Lx ∧My)→ Bxy

BMS : ∀x∀y(Mx ∧ Sy)→ Bxy

T : ∀x∀y∀z(Bxy ∧Byz → Bxz)
I : ∀x¬Bxx

APPENDIX A. ASSIGNMENTS 296

A very small model for these axioms consists of three shirts s, m, and
`, with Ss, Mm, L`, B`m, Bms and B`s being an exclusive list of true
predicate assignments.1 This can be verified (tediously) by checking that
each of the axioms holds. For example, T works because the only way to
assign x, y, and z so that Bxy and Byz are both true is to make x = `,
y = m, and z = s; but then Bxz is B`s which is true.

For each of the following statements, prove (using the methods in §§2.4
and 2.5) that it is a consequence of the above axioms, or describe a model in
which the axioms hold but the statement does not.

1. ∀x(Sx ∨Mx ∨ Lx).

2. ∀x∀y(Lx ∧ Sy)→ Bxy.

3. ∀x(¬Sx ∨ ¬Mx).

4. ∀x∃y(¬Lx→ Byx).

Solution

1. This is not true in general. Consider a model that adds to the very
small model an extra shirt q, such that no predicate involving q is true.
Axioms S1, M1, and L1 are still true, because s, m, and ` make them
true. The remaining axioms also hold because they continue to hold
for s, m, and `; setting any of the variables to q makes the premise
of the implication false in BLM , BMS , or T ; and setting x to q makes
Bxx false and thus ¬Bxx true in I. But in this model it is not the
case that ∀x : (Sx ∨Mx ∨ Lx), because Sx ∨Mx ∨ Lx is false when
x = q.

2. Proof: Fix x and y and suppose Lx and Sy both hold. Let m be any
shirt for which Mm is true (at least one such shirt exists by Axiom
M1). Then Bxm (Axiom BLM) and Bmy (Axiom BMS). So Bxy
(Axiom T).

1Note that there is nothing special about the names s, m and `, which were chosen
mostly to make it easier to remember which shirt satisfies which predicate. We could
instead have made a model with, say, shirts named a, b, c, and d, satisfying precisely the
predicates La, Mb, Mc, Sd, Bab, Bac, Bad, Bbc, Bbd, and Bcd. This model has two
medium shirts, one of which (b) is bigger than the other one (c). It satisfies the axioms
because L1 holds for x = d; M1 holds for x = b or x = c; L1 holds for x = a; BLM holds
for the cases x = a and y = b or x = a and y = c; BMS holds for the cases x = b and y = d
or x = c and y = d; T holds for all four possible choices of x, y, and z that make Bxy and
Byz true; and I holds because we were not foolish enough to set any of Baa, Bbb, Bcc, or
Bdd to be true.

APPENDIX A. ASSIGNMENTS 297

3. Proof: Suppose there is a shirt x with Sx and Mx. Then Bxx (Axiom
BMS). But this contradicts Axiom I.
If we are uncomfortable with a proof by contradiction, we can turn
the argument around using contraposition. The direct proof is: Fix x.
Then ¬Bxx (Axiom I). Applying contraposition to the implication
in Axiom BMS gives ∀x∀y(¬Bxy → ¬(Mx ∨ Sy)). We can further
rewrite this using De Morgan’s law to get ∀x∀y(¬Bxy → (¬Mx∨¬Sy)).
Specialize y to x to get ∀x(¬Bxx→ (¬Mx∨¬Sx)). But we previously
established ∀x¬Bxx, so this gives ∀x(¬Mx ∨ ¬Sx).

4. For this we can reuse the four-shirt model from the first case. Letting
x = q makes ¬Lx true (since Lq is false), but it is also the case that
for any choice of y, Byq is also false. So we have ∀y¬(¬Lq → Byq) ≡
¬∃y(¬Lq → Byq), giving a counterexample to the statement.

A.2 Assignment 2: Due Wednesday, 2017-09-20,
at 5:00 pm

A.2.1 Arithmetic, or is it?

Suppose we have the following axioms, where 0 and 1 are constants and
+ is a function of two arguments written in the usual infix notation. As
usual, we adopt the convention that any unbound variables are universally
quantified: so, for example, the axiom x + y = y + x should be read as
∀x∀y : x+ y = y + x.

0 6= 1 (A.2.1)
x+ 0 = x (A.2.2)
x+ y = y + x (A.2.3)

x+ (y + z) = (x+ y) + z (A.2.4)
(x+ y = 0)→ (x = 0 ∧ y = 0) (A.2.5)

Define x < y to hold if and only if there exists some z 6= 0 such that
x+ z = y.

For each of the following statements, give a proof that it follows from
the above axioms, or construct a model in which the axioms hold but the
statement is false.

1. 0 < 1.

APPENDIX A. ASSIGNMENTS 298

2. If x+ z = y + z, then x = y.

3. If x < y, then x+ z < y + z.

4. If a < b and c < d, then a+ c < b+ d.

Solution

1. Proof: From (A.2.3) and (A.2.2) we have 0 + 1 = 1 + 0 = 1. Now apply
the definition of < with x = 0, z = 1, y = 1.

2. Counterexample model: Include only 0 and 1, with 0 6= 1 (so (A.2.1)
holds). Let x+ y = 1 if x = 1 or y = 1, and let x+ y = 0 otherwise.
Then (A.2.2) holds because x + 0 is either 0 if x is 0 or 1 if x is 1;
(A.2.3) holds because OR is commutative; (A.2.4) holds because OR is
associative; and (A.2.5) is immediate from our definition of +.
However, in this model we can have 0 + 1 = 1 + 1, but 0 6= 1.

3. Let x < y. Expanding the definition gives that there exists some
q 6= 0 such that x + q = y. But then for any z, (x + q) + z = y + z
(substitution rule), and applying (A.2.4) and (A.2.3) a few times gives
(x+ z) + q = y + z. Since q 6= 0, this shows x+ z < y + z.

4. Let a < b and c < d. Then there exist q, r, both nonzero, such that
a+ q = b and c+ r = d. Use substitution to show (a+ q) + (c+ r) =
b+ d, and use (A.2.4) and (A.2.3) to rewrite the left-hand side to get
(a+ c) + (q + r) = b+ d. Because q 6= 0, (A.2.5) says q + r 6= 0, which
gives a+ c < b+ d.

A.2.2 Some distributive laws

Prove or disprove each of the following:

1. For all sets A, B, C, and D: if A ⊆ C and B ⊆ D, then A∩B ⊆ C∩D.

2. For all sets A, B, C, and D: if A ⊆ C and B ⊇ D, then A \B ⊆ C \D.

Solution

1. Proof: Let x ∈ A ∩B. Then x ∈ A ⊆ C implies x ∈ C, and similarly
x ∈ B ⊆ D implies x ∈ D. So x ∈ C ∩ D. Since x was arbitrary,
we have ∀x : x ∈ A ∩ B → x ∈ C ∩ D, which is the definition of
A ∩B ⊆ C ∩D.

APPENDIX A. ASSIGNMENTS 299

2. Proof: Let x ∈ A \ B. Then x ∈ A and x 6∈ B, which gives x ∈ C
(since A ⊆ C) and x 6∈ D (since D ⊆ B). So x ∈ C \D.

A.2.3 Elements and subsets

Suppose A, B, and C are all sets.
In each of the following situations, show one of (a) A must be an element

of C but is not necessarily a subset of C; (b) A must be a subset of C but is
not necessarily an element of C; (c) A must be both an element and a subset
of C; or (d) A is not necessarily either an element or subset of C.

1. A ∈ B ∈ C.

2. A ∈ B ⊆ C.

3. A ⊆ B ∈ C.

4. A ⊆ B ⊆ C.

(By convention, A ∈ B ∈ C means A ∈ B and B ∈ C, A ∈ B ⊆ C means
A ∈ B and B ⊆ C, and similarly for the other cases.)

Solution

1. Let A = {∅}, B = {A}, and C = {B}. Then A ∈ B and B ∈ C. But
A 6∈ C since A 6= B, and A 6⊆ C since A’s element ∅ is not an element
of C.

2. Because B ⊆ C, any element of B is also an element of C. So A ∈ C.
But A need not be a subset of C; for example, let A = {∅}, B = C =
{A}.

3. Let A = {∅}, B = {∅, {{∅}}}, C = {B}. Then A ⊆ B ∈ C but A 6∈ C
and A 6⊆ C.

4. If x ∈ A, then x ∈ B (since A ⊆ B), but then also x ∈ C (since B ⊆ C).
So any x in A is also in C, making A a subset of C. But A need not
be an element of C; for example, let A = B = C = ∅.

APPENDIX A. ASSIGNMENTS 300

A.3 Assignment 3: Due Wednesday, 2017-09-27,
at 5:00 pm

A.3.1 A powerful problem

Recall that if A and B are sets, then AB is the set of all functions f : B → A.
Let 1 = {∅}, our usual representative one-element set.
Show that if |1A| = |A1|, then |A| = 1.

Solution

There is exactly one function f : A → 1 (it sends all elements of A to the
unique element of 1) so |A1| = 1.

We also have |A1| = |A|, because the function g : A1 → A defined by
g(f) = f(∅) is a bijection. To show this, observe first that g is injective,
since if g(f) = g(f ′) we have f(∅) = f ′(∅), which implies f = f ′ since ∅
is the only element of the domain of f and f ′. Then observe that g is
surjective, since for any x in A, there is a function ∅ 7→ x in A1 such that
g(∅ 7→ x) = (∅ 7→ x)(∅) = x.

Combining these facts and the assumption |1A| = |A1| gives |A| = |A1| =
|1A| = 1.

A.3.2 A correspondence

Prove or disprove: For any sets A, B, and C, there exists a bijective function
f : CA×B →

(
CB

)A
.

Solution

Proof: For any function g : A×B → C in CA×B, define f(g) : A→ CB by
the rule f(g)(a)(b) = g(a, b).

To show f is injective, let f(g) = f(g′). Then for any a in A and b in B,
g(a, b) = f(g)(a)(b) = f(g′)(a)(b) = g′(a, b), giving g = g′.

To show f is surjective, let h : A → CB. Define f ′(h) : A× B → C by
the rule f ′(h)(a, b) = h(a)(b). Then for all a ∈ A, b ∈ B, f(f ′(h)) satisfies
f(f ′(h))(a)(b) = f ′(h)(a, b) = h(a)(b), which gives f(f ′(h)) = h. Since h
was arbitrary, there is an f ′(h) that covers every h in

(
CB

)A
.

Since f is both injective and surjective, it is bijective.
(This particular bijection is known as currying and is popular in func-

tional programming.)

APPENDIX A. ASSIGNMENTS 301

A.3.3 Inverses

For each set A, the identity function 1A : A→ A is defined by 1A(x) = x
for all x in A.

Let f : A→ B and g : B → A be functions such that g ◦ f = 1A. Show
that f is injective and g is surjective.

Solution

First, let’s show f is injective. Let x, y be elements of A such that f(x) = f(y).
Then x = 1A(x) = g(f(x)) = g(f(y)) = 1A(y) = y.

Next, let’s show that g is surjective. Let x be any element of A. Then
f(x) is an element of B such that g(f(x)) = 1A(x) = x.

A.4 Assignment 4: Due Wednesday, 2017-10-04,
at 5:00 pm

A.4.1 Covering a set with itself

Prove or disprove: For any set A, and any surjective function f : A→ A, f
is bijective.

Solution

Disproof: Consider the set N (any infinite set will work, but N has conveniently-
labeled elements). Define a function f : N→ N by the rule

f(x) =
{
x− 1 if x 6= 0
0 if x = 0.

Then f is surjective, since for any y ∈ N, y = f(y + 1), but f is not
injective, because f(0) = f(1) = 0.

A.4.2 More inverses

Let A be a set. Suppose that every function f : A → A has an inverse
function f−1. How many elements can A have?

APPENDIX A. ASSIGNMENTS 302

Solution

Either 0 or 1. If A has 0 elements, then the empty function is its own inverse.
If A has 1 element x, then there is exactly one function in AA, which maps
x to x; this is also its own inverse.

To show that these are the only possibilities, suppose A has at least two
elements x and y. Let f be the function that sends both x and y to x, and
sends all other elements z to themselves. This is not injective and so does
not have an inverse.

A.4.3 Rational and irrational

Let q < r be real numbers such that q is rational and r is irrational. Show,
using the axioms and results in Chapter 4, that there exists a rational q′
such that q < q′ < r.

Solution

We’ll use Theorem 4.3.2, plus the fact that x+ y is rational whenever x and
y are both rational. (Proof: If x = a/b, and y = c/d, then x+ y = ad+bc

bd .)
Because q < r, we have 0 = q − q < r − q.
If r − q ≥ 2, then 1 < 2 ≤ r − q implies q + 1 < r. In this case we can

just set q′ = q + 1.
If r − q < 2, then we have 0 < r − q < 2 and so Theorem 4.3.2 says

that there exists n ∈ N such that n · (r − q) > 2. This n can’t be zero, so it
has a multiplicative inverse and we can multiply both sides by n−1 to get
(r − q) > 2/n. But then we can set q′ = q + 2/n < q + (r − q) = r.

A.5 Assignment 5: Due Wednesday, 2017-10-11,
at 5:00 pm

A.5.1 A recursive sequence

Consider the sequence a0, a1, a2, . . . given by the rule a0 = 1, a1 = 2, a2 =
3, and for n > 2, an = an−3 + an−2 + an−1. This sequence starts as
1, 2, 3, 6, 11, 20, 37, 68,

Show that an ≤ 2n for all n ∈ N.

APPENDIX A. ASSIGNMENTS 303

Solution

The induction hypothesis is an ≤ 2n. This holds for a0 = 1 ≤ 20, a1 = 2 ≤ 21,
and a2 = 3 ≤ 22; these serve as base cases. For n > 2, suppose that the
hypothesis holds for k < n; then an = an−3 + an−2 + an−1 ≤ 2n−3 + 2n−2 +
2n−1 = 2n(1/8 + 1/4 + 1/2) = 2n(7/8) ≤ 2n.

A.5.2 Comparing products

1. Let a1, . . . , an and b1, . . . , bn be sequences such that 0 ≤ ai ≤ bi for all
i ∈ {1, . . . , n}. Prove that

∏n
i=1 ai ≤

∏n
i=1 bi.

2. Recall that n! =
∏n
i=1 i. Show that, for any positive integer k, there

exists nk, such that for all natural numbers n ≥ nk, kn ≤ n!.

Solution

1. The proof is by induction on n.
We will use the stronger induction hypothesis that 0 ≤

∏n
i=1 ai ≤∏n

i=1 bi, to save having to argue later than these quantities are both
non-negative.
For n = 0, the claim holds trivially: both products are empty and thus
equal to 1.
For larger n, we have

∏n
i=1 ai = a1 ·

∏n
i=2 ai and

∏n
i=1 bi = b1 ·

∏n
i=2 bi,

and from the induction hypothesis, 0 ≤
∏n
i=2 ai ≤

∏n
i=2 bi. Since we

also have 0 ≤ a1 ≤ b1, this gives 0 ≤ a1 ·
∏n
i=2 ai ≤ b1 ·

∏n
i=2 bi and thus

0 ≤
∏n
i=1 ai ≤

∏n
i=1 bi.

(We are using here the fact that 0 ≤ a ≤ b and 0 ≤ c ≤ d implies
0 ≤ ac ≤ bd. This is not given directly by our axioms for the reals,
but is easily shown: ac ≤ bc ≤ cd using Axiom 4.2.5, and similarly
0 = a · 0 ≤ ac.)

2. Let nk = 2k2 (other choices may also work, but this one makes the
proof easier).

APPENDIX A. ASSIGNMENTS 304

Then

n! =
n∏
i=1

i

=

bn/2c−1∏
i=1

i

 n∏
bn/2c

i

≥

bn/2c−1∏
i=1

1

 n∏
bn/2c
bn/2c

≥

 n∏
bn/2c
bnk/2c

≥
(
k2
)dn/2e

≥
(
k2
)n/2

≥ kn.

A.5.3 Rubble removal

One morning, you wake up on a deserted island with nothing but a lifetime
supply of food and water, access to the Internet, and several piles of rocks
on the beach. While waiting for rescue, you decide to get rid of the rocks.
Each day you may either (a) split an existing pile containing at least two
rocks into two nonempty piles, or (b) pick up a rock from a one-rock pile and
throw it into the ocean. After taking one or the other of these actions, you
go back to the Internet café and continue working on your 202 homework
until the next day comes around.

For example, if you start with 3-rock pile, on day 1 you can split it into
a 1-rock pile and a 2-rock pile, on day 2 you can throw away the 1-rock pile,
on day 3 you can split the 2-rock into two 1-rock piles, and on days 4 and 5
you can throw away the 1-rock piles. This strategy removes a 3-rock pile in
just 5 days.

If you start with k piles of sizes n1, n2, . . . nk, where each ni > 0, and
on each day you take exactly one allowed action, what is the minimum and
maximum number of days it will take to get rid of all of the rocks? Give a
proof that your answer is correct.

APPENDIX A. ASSIGNMENTS 305

Solution

The minimum and maximum are both t =
∑m
i=1(2ni − 1) regardless of

strategy. We can prove this by induction on t.
When t = 0, there are no piles, and it takes no time to remove them.
For t > 0, there is at least one pile. Suppose we split or remove pile j.
If we remove pile j, where nj = 1, then we have a new sequence of k − 1

piles n1, . . . , nj−1, nj+1, . . . nk. Compute t′ =
∑j−1
i=1 (2ni− 1) +

∑n
i=j+1(2ni−

1) = t− (2nj − 1) = t− 1. Because t′ is less than t, the induction hypothesis
tells us that it will take t′ = t− 1 days to remove the remaining piles. This
gives a total of 1 + t = 1 + (t− 1) = t days.

If we split pile j, where nj > 1, then we get two new piles of size na and
nb, where na and nb are both at least 1 and na + nb = nj . So now we have
t′ = t− (2nj − 1) + (2na − 1) + (2nb − 1) = t− 2nj + 1 + 2nj − 2 = t− 1. So
again we get t′ < t− 1 and the induction hypothesis tells us that it will take
t− 1 days to remove the remaining piles, for t days total.

A.6 Assignment 6: Due Wednesday, 2017-10-25,
at 5:00 pm

A.6.1 An oscillating sum

For any n ∈ N, let

f(n) = (−1)n
n∑
k=0

(−1)k · k (A.6.1)

Give a closed-form expression for f(n), and prove that it is correct.

Solution

First let’s figure out what f(n) looks like, then try to prove that it works.
We can make a table:

APPENDIX A. ASSIGNMENTS 306

n (−1)n · n
∑n
k=0(−1)k · k (−1)n

∑n
k=0(−1)k · k

0 0 0 0
1 −1 −1 1
2 2 1 1
3 −3 −2 2
4 4 2 2
5 −5 −3 3
6 6 3 3
7 −7 −4 4

This suggests a sequence 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5,
We can write this in closed form as

g(n) = bn+ 1
2 c. (A.6.2)

To prove that this works, it may be helpful to expand it out a bit:

g(n) =
{
n
2 when n is even,
n+1

2 when n is odd.

We will now argue by induction on n that f(n) = g(n).
When n = 0, we have f(n) = (−1)0 · 0 = 0 and g(n) = 0.
For larger n, expand

f(n) = (−1)n
n∑
k=0

(−1)k · k

= (−1) · (−1)n−1
n−1∑
k=0

(−1)k · k + (−1)n(−1)n · n

= (−1) · f(n− 1) + n

= n− g(n− 1),

where the last equality follows from the induction hypothesis.
If n is even, then n− 1 is odd, so f(n) = n− g(n− 1) = n− (n−1)+1

2 =
n− n

2 = n
2 = g(n).

If n is odd, then n−1 is even, so f(n) = n− g(n−1) = n− n−1
2 = n+1

2 =
g(n).

In either case, the induction step goes through, and we have f(n) =
g(n) = bn+1

2 c for all n ∈ N.

APPENDIX A. ASSIGNMENTS 307

A.6.2 An approximate sum

Show that
n∑
k=1

k2 · 2k = Θ(n2 · 2n). (A.6.3)

Solution

First observe that
∑n
k=1 k

2 · 2k ≥ n2 · 2n = Ω(n2 · 2n).
For the upper bound,

n∑
k=1

k2 · 2k ≤
n∑
k=1

n2 · 2k

= n2
n∑
k=1

2k

≤ n2
n∑
k=0

2k

= n2 2n+1 − 1
2− 1

≤ 2n2 · 2n

= O(n2 · 2n).

A.6.3 A stretched function

Let f : N→ N and g : N→ N.
Prove or disprove: If f(n) is in O(n), and g(n) is in O(n), then f(g(n))

is in O(n).

Solution

This is true, but the proof is a little trickier than one might expect, since
we may have to consider some special cases depending on what input g(n)
supplies to f(n).

Suppose f(n) and g(n) are both in O(n). Let cf , nf , cg, and ng be
constants such that f(n) ≤ cfn for all n ≥ nf and g(n) ≤ cgn for all
n ≥ ng.2

Now pick some n ≥ ng, and consider f(g(n)). We have that g(n) ≤ cgn.
For f(g(n)), there are two cases:

2We can drop the absolute values here because we know that f(n) and g(n) are always
non-negative.

APPENDIX A. ASSIGNMENTS 308

1. If g(n) < nf , then we know nothing about f(n). However, there are only
finitely many possible values less than nf , so the set {f(n) | n < nf}
is finite, and so there is some upper bound b such that f(n) ≤ b for all
n < nf .

2. If g(n) ≥ nf , then f(g(n)) ≤ cf · g(n) ≤ cf · cg · n.

Let cf◦g = cf · cg and nf◦g = max
(
ng,

b
cf cg

)
. Then for any n ≥ nf◦g, we

have cf◦g · n ≥ cf◦g · nf◦g ≥ cfcg
b

cf cg
= b. So if the first case above holds,

f(g(n)) ≤ b ≤ cf◦g · n. If instead the second case holds, f(g(n)) ≤ cfcgn =
cf◦g · n. In either case we have f(g(n)) ≤ cf◦gn for n ≥ nf◦g, which shows
f(g(n)) is in O(n).

A.7 Assignment 7: Due Wednesday, 2017-11-01,
at 5:00 pm

A.7.1 Divisibility

Show that, for all n ∈ N,

12 | (n(n+ 1)(n+ 2)(n+ 3)). (A.7.1)

Solution

The proof below is an improved version of my original draft solution, in which
I got carried away and used the Chinese Remainder Theorem. Discussions
with several students caused me to realized that using CRT was overkill.
The induction argument used below is adapted from a suggested proof by
Alika Smith and replaces an uglier, though still valid, approach of finding a
particular element of {n, n+ 1, . . . , n+ k − 1} that is divisible by k. There
are many other ways to prove this result, but this is the one I like best.

First let’s show that for any n ∈ N and any k ∈ N+, k |
∏
i=n n+ k − 1i.

The proof is by induction on n for fixed k.
When n = 0, the product is also 0, and k |

∏
i=n n+ k − 1i.

Suppose now that k |
∏
i=n n+ k − 1i. Expand

n+k∏
i=n+1

i = (n+ k)
n+k−1∏
i=n+1

i

=
n+k−1∏
i=n

+k
n+k−1∏
i=n+1

i.

APPENDIX A. ASSIGNMENTS 309

Setting k = 4 gives 4 | n(n + 1)(n + 2)(n + 3). Setting k = 3 gives
3 | n(n+ 1)(n+ 2) | n(n+ 1)(n+ 2)(n+ 3). But for any m, if 4 | m and 3 | m,
then lcm(4, 3) = 12 must also divide m. So 12 | n(n+ 1)(n+ 2)(n+ 3).

A.7.2 Squares

Let p be prime. Show that if
x2 = y2 (mod p), (A.7.2)

then either
x = y (mod p) (A.7.3)

or
x = −y (mod p). (A.7.4)

Solution

This is mostly just high-school algebra. Working in Zp, we start with
x2 = y2.

Subtract y2 from both sides to get
x2 − y2 = 0.

Now factor the LHS to get
(x+ y)(x− y) = 0 (mod p),

which means that p | (x+ y)(x− y).
Recall from §8.4.2.2 that if p | ab then p | a or p | b. So either p | (x+ y),

giving x+ y = 0 (mod p) and thus x = −y (mod p), or p | (x− y), giving
x− y = 0 (mod p) and thus x = y (mod p).

A.7.3 A Series of Unfortunate Exponents

A C programmer working on a b-bit architecture decides to do a lot of
unsigned integer exponentiation. Starting with an initial value x0, they
compute a sequence of values x0, x1, x2, . . . by the rule xi+1 = xki , where k
is some odd exponent. Because they are foolish enough to program in C, the
actual rule is xi+1 = xki mod 2b, since C throws away without warning all
but the b least significant bits of the result when doing arithmetic, silently
putting all operations in Z2b instead of N.

Show that if x0 and k are both odd, then x2b−2 = x0.
(Added 2017-10-31: Assume b ≥ 2. Also assume 0 ≤ x0 < 2b.)

APPENDIX A. ASSIGNMENTS 310

Solution

An easy induction argument shows that xi = xk
i .

Recall that Euler’s theorem says that if gcd(a,m) = 1, then aφ(m) = 1
(mod m).

Since x0 is odd, gcd(x0, 2b) = 1, so xφ(2b)
0 = 1 (mod 2b). We can compute

φ(2b) by the rule φ(pn) = (p− 1)pn−1 = 1 · 2b−1 = 2b−1.
Since k is odd, gcd(k, 2b−1) = 1, so by Euler’s Theorem, kφ(2b−1) =

k2b−2 = 1 (mod 2b−1).
Now consider x2b−2 = xk

2b−2
. Since k2b−2 = 1 (mod 2b−1), we can rewrite

k2b−2 as a2b−1 + 1, which makes

x2b−2 = xk
2b−2

= xa2b−1+1

=
(
x2b−1)a · x.

But x2b−1 = 1 (mod 2b), so(
x2b−1)a · x = 1a · x = x (mod 2b).

A.8 Assignment 8: Due Wednesday, 2017-11-08,
at 5:00 pm

A.8.1 Minimal and maximal elements

For this problem, we will consider partially-ordered sets whose elements are
sets of natural numbers, and for which the ordering is given by ⊆. For each
such partially-ordered set, we can ask if it has a minimal or maximal element.

A very small example would be {{0} , {0, 1} , {2}}, which has minimal
elements {0} and {2} and maximal elements {0, 1} and {2}.

1. Prove or disprove: There exists a nonempty R ⊆ P(N) with no maximal
elements.

2. Prove or disprove: There exists a nonempty S ⊆ P(N) with no minimal
elements.

3. Prove or disprove: There exists a nonempty T ⊆ P(N) that has neither
minimal nor maximal elements.

APPENDIX A. ASSIGNMENTS 311

Solution

1. Proof: There are many choices here. One is to let R = {A0, A1, A2, . . .}
where Ai = {j ∈ N | j < i}. Then R has no maximal elements, because
for any Ai ∈ R, Ai (Ai+1 ∈ R.

2. Proof: For this we will do the same thing as above in reverse. Let
S = {B0, B1, B2, . . .} where Bi = {j ∈ N | j ≥ i}. Then S has no
minimal element, because for any Bi ∈ S, Bi) Bi+1.

3. Proof: Here we can combine the previous two results by being a little
sneaky. Let T = {Cij | i ∈ N, j ∈ N} where each x ∈ N is in Cij if
and only if x = 2k and k < i, or x = 2k + 1 and k ≥ j. Now
T has no minimal or maximal elements, because for any Cij ∈ T ,
Ci,j+1 (Cij (Ci+1,j .

A.8.2 No trailing zeros

Let ∼ be a relation defined on N by the rule x ∼ y if x = 2ky or y = 2kx for
some k ∈ N.

1. Show that ∼ is an equivalence relation.

2. Consider the set N/∼ of equivalence classes of ∼. Show that there is a
bijection f : N→ N/∼.

Solution

To make our life easier, let’s start with a quick lemma:

Lemma A.8.1. For any x, y ∈ N, x ∼ y if and only if there exists some
k ∈ Z such that x = 2ky in Q.

Proof. Suppose x ∼ y. Then either x = 2ky for some k ∈ N ⊆ Z and we are
done, or y = 2k′x for some k′ ∈ N. In the latter case, solve for x = 2−k′y
and let k = −k′.

In the other direction, if x = 2ky, and k ≥ 0, then x = 2ky for some
k ∈ N, giving x ∼ y. If instead k < 0, then y = 2−kx, again giving x ∼ y.

1. We must show that ∼ has all three conditions for being an equivalence
relation:

Reflexive For any x ∈ N, x = 20x so x ∼ x.

APPENDIX A. ASSIGNMENTS 312

Symmetric If x ∼ y, then from Lemma A.8.1 there exists k ∈ Z such
that x = 2ky. But then y = 2−kx, so applying the lemma again
gives y ∼ x.

Transitive If x ∼ y ∼ z, then x = 2ky and y = 2`z for some k, ` ∈ Z
(Lemma A.8.1). Solve to get x = 2k+`z, which gives x ∼ z.

2. We have to be a little bit careful here. Most equivalence classes in N/∼
are infinite sets of the form [2x+ 1]∼ =

{
2k(x+ 1)

∣∣∣ k ∈ N
}
, but [0]∼

is a special case.
Let

f(n) =
{

[0]∼ when n = 0, and
[2n− 1]∼ when n 6= 0.

We claim that f is a bijection between N and N/∼.
First let’s show that [0]∼ = {0}. If x ∼ 0, then x = 2k0 for some k ∈ Z,
which gives x = 0.
To show f is injective, let f(x) = f(y). We wish to show x = y. If
x = y = 0, we are done. If x = 0 and y 6= 0, then 0 ∼ 2y − 1 6= 0,
contradicting f(x) = f(y); the same holds if y = 0 and x 6= 0. If x 6= 0
and y 6= 0, then 2x−1 ∼ 2y−1. Assume without loss of generality that
2x − 1 = 2k(2y − 1) for some k ∈ N. Since the left-hand side is odd,
the right-hand side must be odd as well, so k = 0 and 2x− 1 = 2y − 1,
which we can solve to get x = y.
To show f is surjective, consider some equivalence class [m]∼ in N/∼.
Then [m]∼ is a nonempty subset of the well-ordered set N, so it has a
smallest element y.

• If y is even, then y = 0, because otherwise y/2 ∼ y is a smaller
element of [m]∼. In this case [m]∼ = [0]∼ = f(0).
• If y is odd, then y = 2x − 1 for some x ∈ N. In this case,

[m]∼ = [2x− 1]∼ = f(x).

In either case we have found an x ∈ N such that [m]∼ = f(x), and f is
surjective.

APPENDIX A. ASSIGNMENTS 313

A.8.3 Domination

Given functions f : R → R and g : R → R, f is dominated by g if
f(x) ≤ g(x) for all x ∈ R.3 Write f � g if f is dominated by g.

1. Prove that � is a partial order.

2. Prove or disprove: � is a total order.

3. Prove or disprove: � is a lattice, in the sense that for any functions
f : R → R and g : R → R, there exist functions f ∧ g : R → R and
f ∨ g : R→ R satisfying the definitions of meet and join for �.

Solution

1. This is just a matter of verifying the requisite properties of �:

Reflexive For all x ∈ R, f(x) ≤ f(x), so f � f .
Anti-symmetric Let f � g and g � f . Then for all x ∈ R, f(x) ≤

g(x) ≤ f(x) and thus f(x) = g(x). Since this holds for all x,
f = g.

Transitive Let f � g � h. Then for all x ∈ R, f(x) ≤ g(x) ≤ h(x),
giving f(x) ≤ h(x). So f � h.

2. It’s not a total order. Let f(x) = x and g(x) = −x. Then f(1) = 1 6≤
−1 = g(1) and g(−1) = 1 6≤ 1 = f(−1). So it is not the case that for
all x, f(x) ≤ g(x), and it is not the case that for all x, g(x) ≤ f(x):
these particular functions f and g are incomparable.

3. It is a lattice. Define f ∧ g by the rule (f ∧ g)(x) = min(f(x), g(x))
and (f ∨ g)(x) = max(f(x), g(x)).
We will show that f ∧ g satisfies the definition of a meet. For all x,
(f ∧ g)(x) = min(f(x), g(x)) ≤ f(x) and similarly (f ∧ g)(x) ≤ g(x),
so f ∧ g � f and f ∧ g � g. If there is some function h such that
h � f and h � g, then for all x, h(x) ≤ f(x) and h(x) ≤ g(x), so
h(x) ≤ min(f(x), g(x)) = (f ∧ g)(x). This shows h � f ∧ g.
To show f ∨ g satisfies the definition of a join, apply duality to the
preceding argument.

3This definition works for functions f : A→ B and g : A→ B for any A and B as long
as B is a partially-ordered set, but for this problem we will stick with A = B = R.

APPENDIX A. ASSIGNMENTS 314

A.9 Assignment 9: Due Wednesday, 2017-11-15,
at 5:00 pm

A.9.1 Quadrangle closure

Call a graph G = (V,E) quadrangle closed if, for any simple path a0a1a2a3
in G, a3a0 is an edge in G.

1. Define a quadrangle closure of G as a graph H with the property
that G is a subgraph of H, H is quadrangle closed, and for any H ′
such that G is a subgraph of H ′ and H ′ is quadrangle closed, H is a
subgraph of H ′.
Show that every graph G has a unique quadrangle closure.

2. Recall that a graph G is bipartite if it is possible to partition the
vertices of G into two disjoint sets S and T , such that every edge in E
has one endpoint in S and one in T .
Show that the quadrangle closure of a bipartite graph is bipartite.

Solution

1. We can do this part using the usual approach for closures: we’ll consider
the set A of all quadrangle closed supergraphs of G, show that it is
nonempty, and then argue that the intersection of all graphs in A is
the quadrangle closure. (We define intersection in the obvious way,
where the intersection of a family of graphs {Gi = (Vi, Ei)} is the graph
(
⋂
Vi,
⋂
Ei).)

To show that A is nonempty, let n = |V |; then G is a subgraph of the
complete graph Kn, which is quadrangle closed because a3a0 exists for
any pair of vertices a3 and a0.
To show that H =

⋂
H′∈AH

′ is quadrangle closed, consider any simple
path a0a1a2a3 in H. Then this path also appears in every H ′ ∈ A, and
since A contains only quadrangle closed graphs, a3a0 must also appear
in every H ′ ∈ A. But then a3a0 appears in H.
Finally, we need to show that H ⊆ H ′ for any quadrangle closed
supergraph H ′ of G. But any such H ′ is in A, so H ⊆ H ′ because H is
the intersection of all graphs in A. This also shows that H is unique,
because if H ′ is also a subgraph of any quadrangle closed supergraph
of G, it is a subgraph of H, so between H ⊆ H ′ and H ′ ⊆ H we have
H = H ′.

APPENDIX A. ASSIGNMENTS 315

2. For this part, let us consider an alternative construction of the quad-
rangle closure of G.
Let G0 = G, and for each Gi that is not quadrangle closed, construct
Gi+1 by picking a path ai0ai1ai2ai3 for which ai3ai0 is missing, and
adding this missing edge to Gi+1.
If Gi is bipartite, then so is Gi+1: if we assume without loss of generality
that ai0 ∈ S, then ai1 ∈ T , ai2 ∈ S, and ai3 ∈ T , so the new edge ai3ai0
goes from T to S. It follows by induction on i that Gi is bipartite for
all i as long as G0 = G is.
We can similarly show by induction that each Gi is a subgraph of every
quadrangle closed supergraph H ′ of G. This holds trivially for G0 = G.
Now suppose that it holds for Gi. Then the path ai0ai1ai2ai3 appears
in H ′, and because H ′ is quadrangle closed, ai3ai0 must also appear in
H ′. But then Gi+1 = Gi ∪ ai3ai0 contains only edges in H ′, and so is a
subgraph of H ′.
Since we can add only finitely many edges to G0, eventually we reach
a Gi to which we will add no more edges. This occurs when Gi
contains ai3ai0 for every path ai0ai1ai2ai3, which means that this Gi is
quadrangle closed. Since it is quadrangle closed and a subgraph of all
quadrangle closed supergraphs of G, it is the quadrangle closure of G.
We have already shown that every Gi is bipartite if G is, so this shows
that the quadrangle closure of a bipartite G is bipartite.

A.9.2 Cycles

Let G be graph with at least three vertices, such that for any two distinct
vertices u and v in G, there are exactly two simple paths from u to v, and
these paths have no edges in common.

Show that G is a cycle.

Solution

First let’s find a cycle.
Pick some vertex v0. The degree of v0 is at least 1, because otherwise

there are no paths from v0 to any of the other vertices.
Let v1 be a neighbor of v0. Then there is a path from v1 to v0 consisting of

the single edge v1v0. From the condition on G, there must be a second path
P = v1v2 . . . vkv0 from v1 to v0. Because P is simple, all of these vertices are

APPENDIX A. ASSIGNMENTS 316

distinct. So C = v0v1v2 . . . vkv0 is a simple cycle on k vertices. We will now
show that C = G.

We do so in two steps. For the first step, we’ll show that C contains
all the vertices in G. Suppose otherwise, and let w be a vertex not in C.
Then there is at least one path from w to v0; let w′ be the last vertex in
this path not in C, and let vi be the first vertex in this path in C. Then
w′vivi+1 . . . vkv0 and w′vivi−1 . . . v1v0 are both paths from w′ to v0, but they
violate the requirement of having no edges in common. So our assumption is
false, and there is no w not in C.

For the second step, we’ll show that C contains all the edges inG. Suppose
that there is an edge vivj that is not in C. Without loss of generality, let
i < j. Then vivi+1 . . . vj , vivj , and vjvj+1 . . . vi−1vi are three different paths
from i to j. This violates the requirement that there are exactly two vi–vj
paths, so our assumption is false.

It follows that C ⊇ G. By construction, C ⊆ G, so C = G, and G is a
cycle.

A.9.3 Deleting a graph

Suppose you are given a graph G0 = (V0, E0), and wish to delete all of its
vertices. At each step, you may pick some vertex v of Gi = (Vi, Ei) that has
degree at most 1 in Gi, and remove it, leaving Gi+1 as the induced subgraph
of Gi on Vi \ {v}. If there is no such vertex v, then you are stuck.

Show that you can reduce a finite graph G0 to the empty graph with no
vertices by this process if and only if G0 is acyclic.

Solution

The proof is by induction on the number of vertices n.
If n = 0, we start with an empty graph, which is acyclic. This gives us

the base case.
For n > 0, there are two cases, depending on the structure of G0:

1. There exists a vertex v of degree 1 or less. Because v has degree at
most 1, it can’t be part of a cycle, so removing it gives a new graph
G1 that contains a cycle if and only if G1 does. (See Lemma 10.10.5.)
Remove this v to get a graph G1 of n − 1 vertices. The induction
hypothesis says that G1 can be reduced to the empty graph if and only
if G1 (and thus G0) is acyclic.

APPENDIX A. ASSIGNMENTS 317

2. There are no vertices with degree 1 or less, and we are stuck. But
then every vertex has degree at least 2, so by the Handshaking Lemma
(Lemma 10.10.3) there are at least n edges. Corollary 10.10.7 says that
G0 contains a cycle.

A.10 Assignment 10: Due Wednesday, 2017-11-29,
at 5:00 pm

As always, justify your answers.

A.10.1 Too many injections

Let A, B, and C be k-element sets, and let S be an n-element set, where
k ≤ n.

How many different triples of functions f : A → S, g : B → S, and
h : C → S are there such that f , g, and h are all injective, and f(A) =
g(B) = h(C)?4

Solution

First let’s pick the set T = f(A) = g(B) = h(C). There are
(n
k

)
different

ways to do this. Because each of f , g, and h is injective, and is surjective
on T , each function is a bijection between A, B, or C and T . Having fixed
T , there are k! choices of bijection for each set. Multiplying everything out
gives (

n

k

)
(k!)3 = (n)k (k!)2

choices.
(I would write this in the form on the left, since it more closely reflects

the preceding argument, but the right-hand version works as well.)

A.10.2 Binomial coefficients

Show that, for any k,m, n ∈ N such that 0 ≤ k ≤ m ≤ n,(
n

m

)(
m

k

)
=
(
n

k

)(
n− k
m− k

)
. (A.10.1)

4This last bit means that f , g, and h all have the same range. The convention is that
when A is a subset of the domain of f (or even the entire domain), f(A) = {f(x) | x ∈ A}.

APPENDIX A. ASSIGNMENTS 318

Solution

Let S be an n-element set. Then S has
(n
m

)
m-element subsets T , and each

such T has
(m
k

)
k-element subsets U . This gives a total of

(n
m

)(m
k

)
pairs

〈T,U〉 where |T | = m, |U | = k, and U ⊆ T ⊆ S.
We now give an alternative way to construct T and U . First pick U ⊆ S

with |U | = k: there are
(n
k

)
ways to do this. Now we’ll pick T \U , which will

be an (m−k)-element subset of the (n−k)-element set S \U ; there are
(n−k
m−k

)
ways to do this. So we get

(n
k

)(n−k
m−k

)
pairs 〈U, T \ U〉, and there is a bijection

mapping these to pairs 〈T ′, U ′〉 given by U ′ = U and T ′ = U ∪ (T \ U).
Since we have a bijection between a set of size

(n
m

)(m
k

)
and a set of size(n

k

)(n−k
m−k

)
, these quantities must be equal.

A.10.3 Variable names

A certain poorly-designed programming language limits variable names to
consist of zero or more letters from the set {a, b, c} followed by zero or more
digits from the set {0, 1, 2, 3}. So the empty string, c, 12, cab100, and
abba2012 are all legal variable names, but 1c and ac1a are not.

There is exactly 1 legal variable name of length 0: the empty string.
There are exactly 7 legal variable names of length 1: a, b, c, 0, 1, 2, and 3.
There are 37 legal variable names of length 2: aa, ab, ac, a0, a1, a2, a3, ba,
bb, bc, b0, b1, b2, b3, ca, cb, cc, c0, c1, c2, c3, 00, 01, 02, 03, 10, 11, 12,
13, 20, 21, 22, 23, 30, 31, 32, and 33.

Give a closed-form expression for the number of legal variable names of
length n.

Solution

There are many, many ways to do this. Here are some of them.

Disjoint union plus power series formula: A variable name of length
n will consist of k letters followed by n− k digits, for some k. For each fixed
k, this gives 3k4n−k possibilities. These cases are all disjoint, so summing

APPENDIX A. ASSIGNMENTS 319

over all possible k gives
n∑
k=0

3k4n−k = 4n
n∑
k=0

(3/4)k

= 4n · 1− (3/4)n+1

1− (3/4)
= 4n · 4 ·

(
1− (3/4)n+1

)
= 4n+1 − 3n+1.

Generating function: Construct a generating function for the series∑∞
n=0 anz

n, where an is the number of legal variable names of length n.
Each variable name consists zero or more letters from a 3-character

alphabet, then zero or more digits from a 4-character collection of digits.
The generating function for the letters is

∑∞
n=0 3nzn = 1

1−3z .
The generating function for the digits is

∑∞
n=0 4nzn = 1

1−4z .
Multiplying these together gives a generating function

F (z) = 1
(1− 3z)(1− 4z)

= A

1− 3z + B

1− 4z

= A(1− 4z) +B(1− 3z)
(1− 3z)(1− 4z) ,

for coefficients A and B to be determined.
Matching coefficients in the numerator gives

1 = A+B

0 = 4A+ 3B,

which has the convenient solution

A = −3
B = 4.

This gives

F (z) = −3
1− 3z + 4

1− 4z

= −3
∞∑
n=0

3nzn + 4
∞∑
n=0

4nzn,

APPENDIX A. ASSIGNMENTS 320

from which we can read off the coefficients

an = 4n+1 − 3n+1.

Combinatorial proof: This is tricky to do unless you already know what
the answer is.

The expression suggests encoding each variable name of length n as a
string of characters of length n + 1 from an alphabet of size 4 (the 4n+1),
where any string consisting only of characters from some sub-alphabet of
size 3 is forbidden (the −3n+1).

Here is one such encoding: Consider a string of n+ 1 characters x0 . . . xn
from {a, b, c, d}.

Define a new string y0 . . . yn−1 by

yi =
{
xi if xj 6= d for all j ≤ i
f(xi+1) otherwise,

where f maps each letter a, b, c, d to the corresponding digit 0, 1, 2, 3.
Given one of the 4n+1 strings x of length n+1, one of two things happens:

either x contains a d, in which case it is mapped to a string of length n
satisfying the rules for variable names, or it does not, in which case it is
mapped to a string of length n+ 1 which may still satisfy the rules (it’s all
letters a, b, or c), but is too long. There are 3n+1 such exceptions, and the
non-exceptional inputs map bijectively to the legal variable names of length
n. So our original set of x’s is a disjoint union of 4n+1 − 3n+1 strings that
correspond to legal variable names of length n and 3n+1 strings that don’t.
This gives 4n+1 − 3n+1 legal variable names of length n.

Induction proof: Here we want to somehow reduce the number of variable
names of length n to a smaller case or cases. This is a little bit tricky, because
after choosing the first character of a variable name we may be constrained
in what we can put in the rest.

To make this work, we can split the set of variable names Sn of length n
into two disjoint subsets: the set An of length-n variable names that start
with a letter, and the set Bn of length-n variable names that start with a
digit. Because every character in a name in Bn must be a digit, we can
calculate |Bn| = 4n. For an element of An, there are 3 choices for the first
letter; after this we have |Sn−1| choices for the remaining characters, because
any legal length-(n− 1) variable name can follow a letter.

APPENDIX A. ASSIGNMENTS 321

This tells us that |Sn| = 3|Sn−1|+4n, which is an example of a recurrence.
Unfortunately we did not spend much time on solving recurrences this
semester. But if we miraculously guess the correct solution |Sn| = 4n+1−3n+1,
we can verify that it works using induction, by showing |S0| = 4 − 3 = 1
(base case) and |Sn| = 3|Sn−1|+ 4n = 3(4n− 3n) + 4n = (3 + 1) · 4n− 3 · 3n =
4n+1 − 3n+1 (induction step).

Appendix B

Exams

B.1 CPSC 202 Exam 1, October 17th, 2017
Write your answers on the exam. Justify your answers. Work alone. Do not
use any notes or books.

There are four problems on this exam, each worth 20 points, for a total
of 80 points. You have approximately 75 minutes to complete this exam.

B.1.1 Factorials (20 points)

Prove that 2n divides (2n)! for all n ∈ N.

Solution

By induction on n. When n = 0, we have (2 · 0)! = 20 = 1.
For larger n, (2n)! =

∏2n
k=1 k = 2n·(2n−1)·

∏2n−2
k=0 = 2n·(2n−1)·(2(n−1))!.

From the induction hypothesis, 2n−1 divides (2(n− 1))!, so there exist an
m ∈ N such thatm·2n−1 = (2(n−1))!. But then (2n)! = 2n·(2n−1)·m·2n−1 =
n · (2n− 1) ·m · 2n, and 2n divides (2n)!.

B.1.2 A tautology (20 points)

Using a truth table, show that

(P ∧Q)→ (P → Q) (B.1.1)

is true for all values of P and Q.

322

APPENDIX B. EXAMS 323

Solution
P Q P ∧Q P → Q (P ∧Q)− > (P → Q)
0 0 0 1 1
0 1 0 1 1
1 0 0 0 1
1 1 1 1 1

B.1.3 Subsets (20 points)

(For this problem, assume that A and B are sets.)
Prove or disprove:

∀A : ((∀B : B = A ∨B 6⊆ A)→ A = ∅).

Solution

Proof: Fix A. Suppose that B = A ∨ B 6⊆ A holds for all B. Let B = ∅.
Then B ⊆ A, so for B = A ∨B 6⊆ A to hold it must be the case that B = A.
But then A = B = ∅.

B.1.4 Surjective functions (20 points)

Prove or disprove: For all functions g : A → B and f : B → C, if f is
surjective, and g is surjective, then f ◦ g is surjective.

Solution

Proof: Let f and g be surjective. Let c be some element of C. Because
f is surjective, there exists some b ∈ B such that f(b) = c. Because g is
surjective, there exists some a ∈ A such that g(a) = b. But then f(g(a)) = c.
Since our choice of c was arbitrary, this means that for any c ∈ C there is an
a ∈ A such that (f ◦ g)(a) = f(g(a)) = c. So f ◦ g is surjective.

B.2 CPSC 202 Exam 2, December 7th, 2017
Write your answers on the exam. Justify your answers. Work alone. Do not
use any notes or books.

There are four problems on this exam, each worth 20 points, for a total
of 80 points. You have approximately 75 minutes to complete this exam.

APPENDIX B. EXAMS 324

B.2.1 Non-decreasing sequences (20 points)

Recall that a sequence a1, a2, . . . , an is non-decreasing if ai ≤ aj when i ≤ j.
Suppose we generate a sequence a1, a2, . . . , an of n values from {0, 1, 2}

uniformly at random, so that all such sequences are equally likely. What is
the probability that a is non-decreasing?

Solution

A non-decreasing sequence can be described by a partition n = n0 + n1 + n2,
where ni is the number of values i that appear in the sequence. There are
n+ 1 choices for n0 (anywhere from 0 to n), and given n0 there are n−n0 + 1
choices for n1. So the total number of possibilities is

n∑
n0=0

(n− n0 + 1) = (n+ 1)(n+ 1)−
n∑

n0=0
n0

= (n+ 1)(n+ 1)− n(n+ 1)
2

= n2 + 3n+ 2
2

= (n+ 1)(n+ 2)
2

=
(
n+ 2

2

)
.

This quantity can also be derived by a combinatorial argument, since
we can generate a partition n = n0 + n1 + n2 by lining up n + 2 objects,
removing two of them, and letting n0, n1, and n2 be the size of the regions
separated by the resulting gaps. Since we are picking two distinct objects
and don’t care about their order, there are

(n+2
2
)
ways to do this.

Alternatively, we can use generating functions. The generating function
for each sequence of identical digits is 1

1−z , so the generating function for
three consecutive sequences is 1

(1−z)3 = (1− z)−3. Expanding this out using

APPENDIX B. EXAMS 325

the binomial theorem gives:

(1− z)−3 =
∞∑
n=0

(
−3
n

)
(−z)n

=
∞∑
n=0

(−1)n (−3)n
n! zn

=
∞∑
n=0

(−1)n(−1)n (n+ 2)n
n! zn

=
∞∑
n=0

(
n+ 2
n

)
zn.

In each case, the probability that the sequence is non-decreasing is(n+2
2
)
/3n.

B.2.2 Perfect matchings (20 points)

A matching on a graph G is a subgraph M of G where every vertex in M
has degree exactly 1. A perfect matching on G is a matching that includes
every vertex in G.

As a function of n, how many perfect matchings are there on K2n, the
complete graph with 2n vertices? For full credit, put your answer in closed
form.

Solution

The quickest way to do this is to observe that we can generate a perfect
matching by choosing a numbering of the vertices from 0 to 2n− 1 (there
are (2n)! ways to do this), and then matching each even-numbered vertex 2k
with the following odd-numbered vertex 2(k+ 1). Because we could flip each
pair of matched vertices and get the same matching, as well as reordering the
edges, this counts each matching 2nn! times. So the number of matchings is
2n)!
2nn! .

Alternatively, we could generate the matching one step at a time. Suppose
we have already numbered the vertices of G from 0 to 2n− 1. Consider the
following method for generating a perfect matching. At each step, pair the
smallest-numbered unmatched vertex with some other unmatched vertex.
After adding k edges, there are 2(n− k)− 1 ways to do this. Multiplying out
all these values gives

∏n−1
k=0(2(n− k)− 1) =

∏n
k=1(2k − 1) possible perfect

matchings.

APPENDIX B. EXAMS 326

If we happen to remember the double factorial notation, we can write
this as (2n − 1)!!. Otherwise, we have to do some work to construct this
product using ordinary factorial.

One way to do this is to take the product of all the numbers from 1 to
2n and remove the even numbers. Observe that

(2n)! =
(

n∏
k=1

(2k − 1)
)(

n∏
k=1

2k
)

=
(

n∏
k=1

(2k − 1)
)

2n
(

n∏
k=1

k

)

=
(

n∏
k=1

(2k − 1)
)

2nn!.

Dividing out 2nn! gives
n∏
k=1

(2k − 1) = (2n)!
2nn! .

This happens to agree with our previous solution, which is always reas-
suring.

We can also start with (2n− 1)! and remove the even numbers from 2 to
2n− 2. This gives the equivalent, though slightly less compact, closed-form
expression (2n−1)!

2n−1(n−1)! .

B.2.3 Quadratic forms (20 points)

A quadratic form is a function f : Rn → R of the form

f(x) =
n∑
i=1

n∑
j=1

cijxixj ,

where the cij are constants.
Show that for any quadratic form f , there is a matrix A such that

f(x) = x>Ax, where x is represented as a column vector.

APPENDIX B. EXAMS 327

Solution

Use the definition of matrix multiplication to expand

x>Ax = x>(Ax)

=
n∑
i=1

xi(Ax)i1

=
n∑
i=1

xi

 n∑
j=1

Aijxj

=

n∑
i=1

n∑
j=1

xiAijxj .

Setting Aij to cij for all i and j makes this equal to f(x).

B.2.4 Minimal lattices (20 points)

Prove or disprove: For any partial order (S,≤) that is a lattice, if x is a
minimal element of S, x is also a minimum element of S.

Solution

Here are two proofs.
Direct proof: Let x be a minimal element of S. Then for any y ≤ x,

y = x. To show x is a minimum, we need to show that x ≤ z for all z in
S. Pick some such z, and consider the element x ∧ z. Then x ∧ z ≤ x, so
x ∧ z = x. But then x = x ∧ z ≤ z.

By contraposition: Suppose x is not a minimum element. Then there
exists y such that x 6≤ y. Let z = x ∧ y. Then z ≤ x and z ≤ y. Because
z ≤ y, z 6= x. So there exists a z such that z ≤ x and z 6= x, meaning that x
is not minimal.

Appendix C

Sample assignments from
Fall 2013

These are sample assignments from the Fall 2013 version of CPSC 202.

C.1 Assignment 1: due Thursday, 2013-09-12, at
5:00 pm

Bureaucratic part

Send me email! My address is james.aspnes@gmail.com.
In your message, include:

1. Your name.

2. Your status: whether you are an undergraduate, grad student, auditor,
etc.

3. Anything else you’d like to say.

(You will not be graded on the bureaucratic part, but you should do it
anyway.)

C.1.1 Tautologies

Show that each of the following propositions is a tautology using a truth
table, following the examples in §2.2.2. Each of your truth tables should
include columns for all sub-expressions of the proposition.

328

mailto:james.aspnes@gmail.com

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 329

1. (¬P → P)↔ P .

2. P ∨ (Q→ ¬(P ↔ Q)).

3. (P ∨Q)↔ (Q ∨ (P ↔ (Q→ R))).

Solution

For each solution, we give the required truth-table solution first, and then
attempt to give some intuition for why it works. The intuition is merely an
explanation of what is going on and is not required for your solutions.

1. Here is the truth table:

P ¬P ¬P → P (¬P → P)↔ P

0 1 0 1
1 0 1 1

Intuitively, the only way for an implication to be false is if it has a true
premise and a false conclusion, so to make ¬P → P false we need P
to be false, which is what the tautology says.

2. Here we just evaluate the expression completely and see that it is
always true:

P Q P ↔ Q ¬(P ↔ Q) Q→ (¬(P ↔ Q)) P ∨ (Q→ (¬(P ↔ Q)))
0 0 1 0 1 1
0 1 0 1 1 1
1 0 0 1 1 1
1 1 1 0 0 1

This is a little less intuitive than the first case. A reasonable story
might be that the proposition is true if P is true, so for it to be false,
P must be false. But then ¬(P ↔ Q) reduces to Q, and Q ↔ Q is
true.

3. (P ∨Q)↔ (Q ∨ (P ↔ (Q→ R))).

P Q R P ∨Q Q→ R P ↔ (Q→ R) Q ∨ (P ↔ (Q→ R)) (P ∨Q)↔ (Q ∨ (P ↔ (Q→ R)))
0 0 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 1 0 1 0 1 1 1
0 1 1 1 1 0 1 1
1 0 0 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 0 0 1 1
1 1 1 1 1 1 1 1

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 330

I have no intuition whatsoever for why this is true. In fact, all three
of these tautologies were plucked from long lists of machine-generated
tautologies, and three variables is enough to start getting tautologies
that don’t have good stories.
It’s possible that one could prove this more succinctly by arguing by
cases that if Q is true, both sides of the biconditional are true, and if
Q is not true, then Q→ R is always true so P ↔ (Q→ R) becomes
just P , making both sides equal. But sometimes it is more direct (and
possibly less error-prone) just to “shut up and calculate.”

C.1.2 Positively equivalent

Show how each of the following propositions can be simplified using equiva-
lences from Table 2.2 to a single operation applied directly to P and Q.

1. ¬(P → ¬Q).

2. ¬((P ∧ ¬Q) ∨ (¬P ∧Q)).

Solution

1.

¬(P → ¬Q) ≡ ¬(¬P ∨ ¬Q)
≡ ¬¬P ∧ ¬¬Q
≡ P ∧Q.

2.

¬((P ∧ ¬Q) ∨ (¬P ∧Q))
≡ ¬(P ∧ ¬Q) ∧ ¬(¬P ∧Q)
≡ (¬P ∨ ¬¬Q) ∧ (¬¬P ∨ ¬Q)
≡ (¬P ∨Q) ∧ (P ∨ ¬Q)
≡ (¬P ∨Q) ∧ (¬Q ∨ P)
≡ (P → Q) ∧ (Q→ P)
≡ P ↔ Q.

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 331

C.1.3 A theory of leadership

Suppose we are trying to write down, in predicate logic, a theory explaining
the success or failure of various historical leaders. The universe consists of
historical leaders; when writing ∀x we are implicitly limiting ourselves to
historical leaders under consideration, and similarly when writing ∃x. We
have two predicates taller(x, y) (“x was taller than y”) and successful(x) (“x
was successful as a leader), as well as all the usual tools of predicate logic ∀,
∃, =, and so forth, and can refer to specific leaders by name.

Express each of the following statements in mathematical form. Note
that these statements are not connected, and no guarantees are made about
whether any of them are actually true.

1. Lincoln was the tallest leader.

2. Napoleon was at least as tall as any unsuccessful leader.

3. No two leaders had the same height.

Solution

1. The easiest way to write this is probably ∀x : taller(Lincoln, x). There
is a possible issue here, since this version says that nobody is taller than
Lincoln, but it may be that somebody is the same height.1 A stronger
claim is ∀x : (x 6= Lincoln)→ taller(Lincoln, x). Both solutions (and
their various logical equivalents) are acceptable.

2. ∀x : ¬ successful(x)→ ¬ taller(x,Napoleon).

3. ∀x ∀y : (x = y)∨taller(x, y)∨taller(y, x). Equivalently, ∀x ∀y : x 6= y →
(taller(x, y)∨ taller(y, x)). If we assume that taller(x, y) and taller(y, x)
are mutually exclusive, then ∀x ∀y : (x = y)∨ (taller(x, y)⊕ taller(y, x))
also works.

1At least one respected English-language novelist [Say33] has had a character claim
that it is well understood that stating that a particular brand of toothpaste is “the most
effective” is not a falsehood even if it is equally effective with other brands—which are
also “the most effective”—but this understanding is not universal. The use of “the” also
suggests that Lincoln is unique among tallest leaders.

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 332

C.2 Assignment 2: due Thursday, 2013-09-19, at
5:00 pm

C.2.1 Subsets

Let R, S, and T be sets. Using the definitions of ⊆, ∪, ∩, and \ given in
§3.2, prove or disprove each of the following statements:

1. R is a subset of S if and only if R ⊆ (S \ T) ∪ (R ∩ T).

2. R is a subset of S if and only if R ⊆ R ∩ S.

3. R is a subset of S \R if and only if R = ∅.

Solution

1. Disproof: Consider R = T = {1}, S = ∅. Then R is not a subset of S,
but

(S \ T) ∪ (R ∩ T) = (∅ \ {1}) ∪ ({1} ∩ {1})
= ∅ ∪ {1}
= {1}
⊇ R.

2. Proof: We need to show this in both directions: first, that if R is a
subset of S, then R ⊆ R ∩ S; then, that if R ⊆ R ∩ S, R is a subset of
S.
Suppose that R is a subset of S. Let x be an element of R. Then x is
also an element of S. Since it is an element of both R and S, x is an
element of R ∩ S. It follows that R ⊆ R ∩ S.
Conversely, suppose that R ⊆ R ∩ S, and let x be an element of R.
Then x is an element of R ∩ S, implying that it is an element of S.
Since x was arbitrary, this gives that every element of R is an element
of S, or R ⊆ S.

3. Proof: If R = ∅, then R is a subset of any set, including S \ R.
Alternatively, if R 6= ∅, then R has at least one element x. But S \R
contains only those elements y that are in S but not R; since x is in R,
it isn’t in S \R, and R 6⊆ S \R.

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 333

C.2.2 A distributive law

Show that the following identities hold for all sets A, B, and C:

1. A× (B ∪ C) = (A×B) ∪ (A× C).

2. A× (B ∩ C) = (A×B) ∩ (A× C).

Solution

1. Let (a, x) ∈ A× (B ∪ C). Then a ∈ A and x ∈ B ∪ C. If x ∈ B, then
(a, x) ∈ A×B; alternatively, if x ∈ C, then (a, x) ∈ A× C. In either
case, (a, x) ∈ (A×B) ∪ (A× C).
Conversely, if (a, x) ∈ (A×B) ∪ (A× C), then either (a, x) ∈ A×B
or (a, x) ∈ A × C. In either case, a ∈ A. In the first case, x ∈ B,
and in the second x ∈ C, giving x ∈ B ∪ C in either case as well. So
(a, x) ∈ A× (B ∪ C).

2. Let (a, x) ∈ A× (B∩C). Then a ∈ A and x ∈ B∩C, giving x ∈ B and
x ∈ C. From a ∈ A and x ∈ B we have (a, x) ∈ A×B; similarly from
a ∈ A and x ∈ C we have (a, x) ∈ A×C. So (a, x) ∈ (A×B)∩ (A×C).
Conversely, if (a, x) ∈ (A × B) ∩ (A × C), then (a, x) ∈ A × B and
(a, x) ∈ A× C. Both give a ∈ A, and the first gives x ∈ B while the
second gives x ∈ C. From this we can conclude that x ∈ B ∩ C, so
(a, x) ∈ A× (B ∩ C).

C.2.3 Exponents

Let A be a set with |A| = n > 0. What is the size of each of the following
sets of functions? Justify your answers.

1. A∅.

2. ∅A.

3. ∅∅.

Solution

1.
∣∣∣A∅∣∣∣ = 1. Proof: There is exactly one function from ∅ to A (the empty
function).

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 334

2.
∣∣∣∅A∣∣∣ = 0. Proof: There is no function from A to ∅, because A contains
at least one element x, and any function f : A→ ∅ would have to map
x to some f(x) ∈ ∅, a contradiction.

3.
∣∣∣∅∅∣∣∣ = 1. Proof: This is just a special case of A∅; the empty function is
the only function with ∅ as a domain. Note that this doesn’t contradict
the ∅A result, because there is no x ∈ ∅ that we fail to send anywhere.

C.3 Assignment 3: due Thursday, 2013-09-26, at
5:00 pm

C.3.1 Surjections

Let f : S → T be surjective. Let S′ ⊆ S, and let T ′ = f(S′) = {f(x) | x ∈ S′}.
Prove or disprove: For any f, S, T, S′ as above, there exists a surjection

g : S \ S′ → T \ T ′.

Solution

Disproof: Suppose S 6= S′ but T = T ′; this can occur, for example, if
S = {a, b}, T = {z}, f(a) = f(b) = z, and S′ = {a}. In this case,
T ′ = T = {z}, giving T \ T ′ = ∅. But S \ S′ = {b} 6= ∅, and since there
are no functions from a nonempty set to the empty set, there can’t be a
surjection g : S \ S′ → T \ T ′.

The solution that got away

I will confess that when I wrote this problem, I forgot about the empty set
case.2

Here is a proof that g : S \ S′ → T \ T ′ exists when T ′ 6= T , which, alas,
is not the actual claim:

Let g(x) = f(x) for each x in S \ S′; in other words, g is the restriction
of f to S \ S′.

Let y ∈ T \ T ′. Because f is surjective, there exists x in S with f(x) = y.
Fix some such x. We have f(x) = y 6∈ T ′, so x 6∈ S′. It follows that x is in
S \ S′.

We’ve just shown that for any y ∈ T \ T ′, there is some x ∈ S \ S′ such
that f(x) = y. But then g(x) = f(x) = y as well, so g is surjective.

2I am grateful to Josh Rosenfeld for noticing this issue.

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 335

C.3.2 Proving an axiom the hard way

Recall that, if a, b, and c are all in N, and a ≤ b, then a + c ≤ b + c
(Axiom 4.2.4).

For any two sets S and T , define S � T if there exists an injection
f : S → T . We can think of � as analogous to ≤ for sets, because |S| ≤ |T |
if and only if S � T .

Show that if A ∩ C = B ∩ C = ∅, and A� B, then

A ∪ C � B ∪ C.

Clarification added 2013-09-25 It’s probably best not to try using the
statement |S| ≤ |T | if and only if S � T in your proof. While this is one
way to define ≤ for arbitrary cardinals, the odds are that your next step is
to assert |A|+ |C| ≤ |B|+ |C|, and while we know that this works when A,
B, and C are all finite (Axiom 4.2.4), that it works for arbitrary sets is what
we are asking you to prove.

Solution

We’ll construct an explicit injection g : A∪C → B ∪C. For each x in A∪C,
let

g(x) =
{
f(x) if x ∈ A, and
x if x ∈ C.

Observe that g is well-defined because every x in A ∪ C is in A or C but
not both. Observe also that, since B ∩ C = ∅, g(x) ∈ B if and only if x ∈ A,
and similarly g(x) ∈ C if and only if x ∈ C.

We now show that g is injective. Let g(x) = g(y). If g(x) = g(y) ∈ B,
then x and y are both in A. In this case, f(x) = g(x) = g(y) = f(y)
and x = y because f is injective. Alternatively, if g(x) = g(y) ∈ C, then
x = g(x) = g(y) = y. In either case we have x = y, so g is injective.

C.3.3 Squares and bigger squares

Show directly from the axioms in Chapter 4 that 0 ≤ a ≤ b implies a ·a ≤ b ·b,
when a and b are real numbers.

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 336

Solution

Apply scaling invariance (Axiom 4.2.5) to 0 ≤ a and a ≤ b to get a · a ≤ a · b.
Now apply scaling again to 0 ≤ b and a ≤ b to get a · b ≤ b · b. Finally, apply
transitivity (Axiom 4.2.3) to combine a · a ≤ a · b and a · b ≤ b · b to get
a · a ≤ b · b.

C.4 Assignment 4: due Thursday, 2013-10-03, at
5:00 pm

C.4.1 A fast-growing function

Let f : N→ N be defined by

f(0) = 2,
f(n+ 1) = f(n) · f(n)− 1.

Show that f(n) > 2n for all n ∈ N.

Solution

The proof is by induction on n, but we have to be a little careful for small
values. We’ll treat n = 0 and n = 1 as special cases, and start the induction
at 2.

For n = 0, we have f(0) = 2 > 1 = 20.
For n = 1, we have f(1) = f(0) · f(0)− 1 = 2 · 2− 1 = 3 > 2 = 21.
For n = 2, we have f(2) = f(1) · f(1)− 1 = 3 · 3− 1 = 8 > 4 = 22.
For the induction step, we want to show that, for all n ≥ 2, if f(n) > 2n,

then f(n+ 1) = f(n) · f(n)− 1 > 2n+1. Compute

f(n+ 1) = f(n) · f(n)− 1
> 2n · 2n − 1
= 2n · 4− 1
= 2n+1 + 2n+1 − 1
> 2n+1.

The principle of induction gives us that f(n) > 2n for all n ≥ 2, and
we’ve already covered n = 0 and n = 1 as special cases, so f(n) > 2n for all
n ∈ N.

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 337

C.4.2 A slow-growing set

Let

A0 = {3, 4, 5} ,
An+1 = An ∪

∑
x∈An

x.

Give a closed-form expression for Sn =
∑
x∈An x. Justify your answer.

Clarification added 2013-10-01 For the purpose of this problem, you
may assume that

∑
x∈A x +

∑
x∈B x =

∑
x∈A∪B x if A and B are disjoint.

(This is provable for finite sets in a straightforward way using induction on
the size of B, but the proof is pretty tedious.)

Solution

Looking at the first couple of values, we see:

S0 = 3 + 4 + 5 = 12
S1 = 3 + 4 + 5 + 12 = 24
S2 = 3 + 4 + 5 + 12 + 24 = 48

It’s pretty clear that the sum is doubling at each step. This suggests a
reasonable guess would be

∑
x∈An x = 12 · 2n, which we’ve shown works for

n = 0.
For the induction step, we need to show that when constructing An+1 =

An ∪ {Sn}, we are in fact doubling the sum. There is a tiny trick here in
that we have to be careful that Sn isn’t already an element of An.

Lemma C.4.1. For all n, Sn 6∈ An.

Proof. First, we’ll show by induction that |An| > 1 and that every element
of An is positive.

For the first part, |A0| = 3 > 1, and by construction An+1 ⊇ An. It
follows that An ⊇ A0 for all n, and so |An| ≥ |A0| > 1 for all n.

For the second part, every element of A0 is positive, and if every element
of An is positive, then so is Sn =

∑
x∈An x. Since each element x of An+1 is

either an element of An or equal to Sn, it must be positive as well.
Now suppose Sn ∈ An. Then Sn = Sn +

∑
x∈An\{Sn} x, but the sum is

a sum of at least one positive value, so we get Sn > Sn, a contradiction. It
follows that Sn 6∈ An.

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 338

Having determined that Sn 6∈ An, we can compute, under the assumption
that Sn = 12 · 2n,

Sn+1 =
∑

x∈An+1

x

=
∑
x∈An

x+ Sn

= Sn + Sn

= 12 · 2n + 12 · 2n

= 12 · (2n + 2n)
= 12 · 2n+1.

This completes the induction argument and the proof.

C.4.3 Double factorials

Recall that the factorial of n, written n!, is defined by

n! =
n∏
i=1

i = 1 · 2 · 3 · . . . n. (C.4.1)

The double factorial of n, written n!!, is defined by

n!! =
b(n−1)/2c∏

i=0
(n− 2i). (C.4.2)

For even n, this expands to n ·(n−2) ·(n−4) · . . . 2. For odd n, it expands
to n · (n− 2) · (n− 4) · . . . 1.

Show that there exists some n0, such that for all n in N with n ≥ n0,

(2n)!! ≤ (n!)2. (C.4.3)

Solution

First let’s figure out what n0 has to be.
We have

(2 · 0)!! = 1 (0!)2 = 1 · 1 = 1
(2 · 1)!! = 2 (1!)2 = 1 · 1 = 1
(2 · 2)!! = 4 · 2 = 8 (2!)2 = 2 · 2 = 4
(2 · 3)!! = 6 · 4 · 2 = 48 (3!)2 = 6 · 6 = 36
(2 · 4)!! = 8 · 6 · 4 · 2 = 384 (4!)2 = 24 · 24 = 576

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 339

So we might reasonably guess n0 = 4 works.
Let’s show by induction that (2n)!! ≤ (n!)2 for all n ≥ 4. We’ve already

done the base case.
For the induction step, it will be helpful to simplify the expression for

(2n)!!:

(2n)!! =
b(2n−1)/2c∏

i=0
(2n− 2i)

=
n−1∏
i=0

(2n− 2i)

=
n∏
i=1

2i.

(The last step does a change of variables.)
Now we can compute, assuming n ≥ 4 and that the induction hypothesis

holds for n:

(2(n+ 1))!! =
n+1∏
i=1

2i

=
(

n∏
i=1

2i
)
· (2(n+ 1))

= ((2n)!!) · 2 · (n+ 1)
≤ (n!)2 · (n+ 1) · (n+ 1)
= (n! · (n+ 1))2

=
((

n∏
i=1

i

)
· (n+ 1)

)2

= ((n+ 1)!)2 .

C.5 Assignment 5: due Thursday, 2013-10-10, at
5:00 pm

C.5.1 A bouncy function

Let f : N→ N be defined by

f(n) =
{

1 if n is odd, and
n if n is even.

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 340

1. Prove or disprove: f(n) is O(n).

2. Prove or disprove: f(n) is Ω(n).

Solution

1. Proof: Recall that f(n) is O(n) if there exist constants c > 0 and N ,
such that |f(n)| ≤ c · |n| for n ≥ N . Let c = 1 and N = 1. For any
n ≥ 1, either (a) f(n) = 1 ≤ 1 · n, or (b) f(n) = n ≤ 1 · n. So the
definition is satisfied and f(n) is O(n).

2. Disproof: To show that f(n) is not Ω(n), we need to show that for any
choice of c > 0 and N , there exists some n ≥ N with |f(n)| < c · |n|.
Fix c andN . Let n be the smallest odd number greater than max(1/c,N)
(such a number exists by the well-ordering principle). Then n ≥ N ,
and since n is odd, we have f(n) = 1. But c · n > c ·max(1/c,N) ≥
c · (1/c) = 1. So c · n > f(n), concluding the disproof.

C.5.2 Least common multiples of greatest common divisors

Prove or disprove: For all a, b, c ∈ Z+,

lcm(a, gcd(b, c)) | gcd(lcm(a, b), lcm(a, c)).

Solution

Proof: Write r for the right-hand side. Observe that

a | lcm(a, b), and
a | lcm(a, c), so
a | gcd(lcm(a, b), lcm(a, c)) = r.

Similarly

gcd(b, c) | b, implying
gcd(b, c) | lcm(a, b), and
gcd(b, c) | c, implying
gcd(b, c) | lcm(a, c),which together give
gcd(b, c) | gcd(lcm(a, b), lcm(a, c)) = r.

Since a | r and gcd(b, c) | r, from the definition of lcm we get lcm(a, gcd(b, c)) |
r.

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 341

C.5.3 Adding and subtracting

Let a, b ∈ N with 0 < a < b.

1. Prove or disprove: gcd(a, b) = gcd(b− a, b).

2. Prove or disprove: lcm(a, b) = lcm(a, b− a).

Solution

1. Proof: Let g = gcd(a, b). Then g | a and g | b, so g | (b− a) as well. So
g is a common divisor of b− a and b. To show that it is the greatest
common divisor, let h | b and h | (b−a). Then h | a since a = b+(b−a).
It follows that h | gcd(a, b), which is g.

2. Disproof: Let a = 2 and b = 5. Then lcm(2, 5) = 10 but lcm(5−2, 5) =
lcm(3, 5) = 15 6= 10.

C.6 Assignment 6: due Thursday, 2013-10-31, at
5:00 pm

C.6.1 Factorials mod n

Let n ∈ N. Recall that n! =
∏n
i=1 i. Show that, if n is composite and n > 9,

then
bn2 c! = 0 (mod n).

Solution

Let n be composite. Then there exist natural numbers a, b ≥ 2 such that
n = ab. Assume without loss of generality that a ≤ b.

For convenience, let k = bn/2c. Since b = n/a and a ≥ 2, b ≤ n/2; but b
is an integer, so b ≤ n/2 implies b ≤ bn/2c = k. It follows that both a and b
are at most k.

We now consider two cases:

1. If a 6= b, then both a and b appear as factors in k!. So k! =
ab
∏

1≤i≤k,i6∈{a,b} i, giving ab | k!, which means n | k! and k! = 0
(mod n).

2. If a = b, then n = a2. Since n > 9, we have a > 3, which means a ≥ 4
since a is a natural number. It follows that n ≥ 4a and k ≥ 2a. So a and

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 342

2a both appear in the product expansion of k!, giving k! mod 2a2 = 0.
But then k! mod n = k! mod a2 = (k! mod 2a2) mod a2 = 0.

C.6.2 Indivisible and divisible

Prove or disprove: If A and B are non-empty, finite, disjoint sets of prime
numbers, then there is a natural number n such that

n mod a = 1

for every a in A, and

n mod b = 0

for every b in B.

Solution

Proof: Let m1 =
∏
a∈A a and m2 =

∏
b∈B b. Because A and B are disjoint,

m1 and m2 have no common prime factors, and gcd(m1,m2) = 1. So by the
Chinese Remainder Theorem, there exists some n with 0 ≤ n < m1m2 such
that

n mod m1 = 1
n mod m2 = 0

Then n mod a = (n mod m1) mod a = 1 mod a = 1 for any a in A, and
similarly n mod b = (n mod m2) mod b = 0 mod b = 0 for any b in B.

(It’s also possible to do this by applying the more general version of the
CRT directly, since each pair of elements of A and B are relatively prime.)

C.6.3 Equivalence relations

Let A be a set, and let R and S be relations on A. Let T be a relation on A
defined by xTy if and only if xRy and xSy.

Prove or disprove: If R and S are equivalence relations, then T is also
an equivalence relation.

Solution

Proof: The direct approach is to show that T is reflexive, symmetric, and
transitive:

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 343

1. Reflexive: For any x, xRx and xSx, so xTx.

2. Symmetric: Suppose xTy. Then xRy and xSy. Since R and S are
symmetric, yRx and ySx. But then yTx.

3. Transitive: Let xTy and yTz. Then xRy and yRz implies xRz, and
similarly xSy and ySz implies xSz. So xRz and xSz, giving xTz.

Alternative proof: It’s also possible to show this using one of the alter-
native characterizations of an equivalence relation from Theorem 9.4.1.

Since R and S are equivalence relations, there exist sets B and C and
functions f : A→ B and g : A→ C such that xRy if and only if f(x) = f(y)
and xSy if and only if g(x) = g(y). Now consider the function h : A→ B×C
defined by h(x) = (f(x), g(x)). Then h(x) = h(y) if and only if (f(x), g(x)) =
(f(y), g(y)), which holds if and only if f(x) = f(y) and g(x) = g(y). But
this last condition holds if and only if xRy and xSy, the definition of xTy.
So we have h(x) = h(y) if and only if xTy, and T is an equivalence relation.

C.7 Assignment 7: due Thursday, 2013-11-07, at
5:00 pm

C.7.1 Flipping lattices with a function

Prove or disprove: For all lattices S and T , and all functions f : S → T , if

f(x ∨ y) = f(x) ∧ f(y) for all x, y ∈ S,

then

x ≤ y → f(y) ≤ f(x) for all x, y ∈ S.

Solution

Let S, T , f be such that f(x ∨ y) = f(x) ∧ f(y) for all x, y ∈ S.
Now suppose that we are given some x, y ∈ S with x ≤ y.
Recall that x ∨ y is the minimum z greater than or equal to both x

and y; so when x ≤ y, y ≥ x and y ≥ y, and for any z with z ≥ x
and z ≥ y, z ≥ y, and y = x ∨ y. From the assumption on f we have
f(y) = f(x ∨ y) = f(x) ∧ f(y).

Now use the fact that f(x) ∧ f(y) is less than or equal to both f(x) and
f(y) to get f(y) = f(x) ∧ f(y) ≤ f(x).

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 344

C.7.2 Splitting graphs with a mountain

Recall that a graph G = (V,E) is bipartite if V can be partitioned into
disjoint sets L and R such that every edge uv has one endpoint in L and the
other in R.

A graph homomorphism f : G → G′ from a graph G = (V,E) to a
graph G′ = (V ′, E′) is a function f : V → V ′ such that, for every uv ∈ E,
f(u)f(v) ∈ E′.

Prove or disprove: A graph G is bipartite if and only if there exists a
graph homomorphism f : G→ K2.

Solution

Denote the vertices of K2 by ` and r.
If G is bipartite, let L,R be a partition of V such that every edge has

one endpoint in L and one in R, and let f(x) = ` if x is in L and f(x) = r if
x is in R.

Then if uv ∈ E, either u ∈ L and v ∈ R or vice versa; In either case,
f(u)f(v) = `r ∈ K2.

Conversely, suppose f : V → {`, r} is a homomorphism. Define L =
f−1(`) and R = f−1(r); then L,R partition V . Furthermore, for any edge
uv ∈ E, because f(u)f(v) must be the unique edge `r, either f(u) = ` and
f(v) = r or vice versa. In either case, one of u, v is in L and the other is in
R, so G is bipartite.

C.7.3 Drawing stars with modular arithmetic

For each pair of natural numbers m and k with m ≥ 2 and 0 < k < m, let
Sm,k be the graph whose vertices are the m elements of Zm and whose edges
consist of all pairs (i, i+ k), where the addition is performed mod m. Some
examples are given in Figure C.1

Give a simple rule for determining, based on m and k, whether or not
Sm,k is connected, and prove that your rule works.

Solution

The rule is that Sm,k is connected if and only if gcd(m, k) = 1.
To show that this is the case, consider the connected component that

contains 0; in other words, the set of all nodes v for which there is a path
from 0 to v.

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 345

S5,1

0

1

23

4

S5,2

0

1

23

4

S8,2

0
1

2

3
4

5

6

7

Figure C.1: Examples of Sm,k for Problem C.7.3

Lemma C.7.1. There is a path from 0 to v in Sm,k, if and only if there is
a number a such that v = ak (mod m).

Proof. To show that a exists when a path exists, we’ll do induction on the
length of the path. If the path has length 0, then v = 0 = 0 · k (mod m). If
the path has length n > 0, let u be the last vertex on the path before v. By
the induction hypothesis, u = bk (mod m) for some b. There is an edge from
u to v if and only if v = u± k (mod m). So v = bk± k = (bk± 1) (mod m).

Conversely, if there is some a such that v = ak (mod m), then there is a
path 0, k, . . . , ak from 0 to v in Sm,k.

Now suppose gcd(m, k) = 1. Then k has a multiplicative inverse mod
m, so for any vertex v, letting a = k−1v (mod m) gives an a for which
ak = k−1vk = v (mod m). So in this case, there is a path from 0 to every
vertex in Sm,k, showing that Sm,k is connected.

Alternatively, suppose that gcd(m, k) 6= 1. Let g = gcd(m, k). Then
if v = ak (mod m), v = ak − qm for some q, and since g divides both k
and m it also divides ak − qm and thus v. So there is no path from 0 to 1,
since g > 1 implies g does not divide 1. This gives at least two connected
components, and Sm,k is not connected.

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 346

1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5

1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5

1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5

1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5

1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5

1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5

1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5

1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5

1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5 1

2

3

4

5

Figure C.2: All 90 two-path graphs on five vertices

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 347

C.8 Assignment 8: due Thursday, 2013-11-14, at
5:00 pm

C.8.1 Two-path graphs

Define a two-path graph to be a graph consisting of exactly two disjoint
paths, each containing one or more nodes. Given a particular vertex set
of size n, we can consider the set of all two-path graphs on those vertices.
For example, when n = 2, there is exactly one two-path graph, with one
vertex in each length-0 path. When n = 3, there are three: each puts one
vertex in a path by itself and the other two in a length-1 path. For larger n,
the number of two-path graphs on a given set of n vertices grows quickly.
For example, there are 15 two-path graphs on four vertices and 90 two-path
graphs on five vertices (see Figure C.2).

Let n ≥ 3. How many two-path graphs are there on n vertices?
Give a closed-form expression, and justify your answer.

Solution

First let’s count how many two-path graphs we get when one path has size k
and the other n− k; to avoid duplication, we’ll insist k ≤ n− k.

Having fixed k, we can specify a pair of paths by giving a permutation
v1 . . . vn of the vertices; the first path consists of v1 . . . vk, while the second
consists of vk+1 . . . vn. This might appear to give us n! pairs of paths for
each fixed k. However, this may overcount the actual number of paths:

• If k > 1, then we count the same path twice: once as v1 . . . vk, and
once as vk . . . v1. So we have to divide by 2 to compensate for this.

• The same thing happens when n− k > 1; in this case, we also have to
divide by 2.

• Finally, if k = n− k, then we count the same pair of paths twice, since
v1 . . . vk, vk+1 . . . vn gives the same graph as vk+1 . . . vn, v1 . . . vk. So
here we must again divide by 2.

For odd graphs, the last case doesn’t come up. So we get n!/2 graphs
when k = 1 and n!/4 graphs for each larger value of k. For even graphs,
we get n!/2 graphs when k = 1, n!/4 graphs when 1 < k < n/2, and n!/8
graphs when k = n/2. Adding up the cases gives a total of

n! ·
(1

2 + 1
4 ·
(
n− 1

2 − 1
))

= n! · n+ 1
8

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 348

when n is odd, and

n! ·
(1

2 + 1
4 ·
(
n

2 − 2
)

+ 1
8

)
= n! · n+ 1

8

when n is even.

So we get the same expression in each case. We can simplify this further
to get

(n+ 1)!
8 (C.8.1)

two-path graphs on n ≥ 3 vertices.
The simplicity of (C.8.1) suggests that there ought to be a combinatorial

proof of this result, where we take a two-path graph and three bits of
additional information and bijectively construct a permutation of n + 1
values.

Here is one such construction, which maps the set of all two-path graphs
with vertices in [n] plus three bits to the set of all permutations on [n+ 1].
The basic idea is to paste the two paths together in some order with n
between them, with some special handling of one-element paths to cover
permutations that put n at one end of the other. Miraculously, this special
handling exactly compensates for the fact that one-element paths have no
sense of direction.

1. For any two-path graph, we can order the two components on which
contains 0 and which doesn’t. Similarly, we can order each path by
starting with its smaller endpoint.

2. To construct a permutation on [n+ 1], use one bit to choose the order
of the two components. If both components have two or more elements,
use two bits to choose whether to include them in their original order or
the reverse, and put n between the two components. If one component
has only one element x, use its bit instead to determine whether we
include x, n or n, x in our permutation.

In either case we can reconstruct the original two-path graph uniquely by
splitting the permutation at n, or by splitting off the immediate neighbor of n
if n is an endpoint; this shows that the construction is surjective. Furthermore
changing any of the three bits changes the permutation we get; together with
the observation that we can recover the two-path graph, this shows that the

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 349

construction is also injective. So we have that the number of permutations
on n+ 1 values is 23 = 8 times the number of two-path graphs on n vertices,
giving (n+ 1)!/8 two-path graphs as claimed.

(For example, if our components are 0, 1, and 2, 3, 4, and the bits are 101,
the resulting permuation is 4, 3, 2, 5, 0, 1. If the components are instead 3 and
2, 0, 4, 1, and the bits are 011, then we get 5, 3, 1, 4, 0, 2. In either case we
can recover the original two-path graph by deleting 5 and splitting according
to the rule.)

Both of these proofs are pretty tricky. The brute-force counting approach
may be less prone to error, and the combinatorial proof probably wouldn’t
occur to anybody who hadn’t already seen the answer.

C.8.2 Even teams

A group of sports astronomers on Gliese 667 Cc are trying to reconstruct
American football. Based on sketchy radio transmissions from Earth, they
have so far determined that it (a) involves ritualized violence, (b) sometimes
involves tailgate parties, and (c) works best with even teams. Unfortunately,
they are still confused about what even teams means.

Suppose that you have n candidate football players, that you pick k of
them, and then split the k players into two teams (crimson and blue, say).
As a function of n, how many different ways are there to do this with k being
an even number?

For example, when n = 2, there are five possibilities for the pairs of
teams: (∅, ∅), (∅, {a, b}), ({a} , {b}), ({b} , {a}), and ({a, b} , ∅).

(Hint: Consider the difference between the number of ways to make k
even and the number of ways to make k odd.)

Clarification added 2013-11-13: Ideally, your answer should be in closed
form.

Solution

We’ll take the hint, and let E(n) be the number of team assignments that
make k even and U(n) being the number that make k uneven, or odd. Then

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 350

we can compute

E(n)− U(n) =
∑

0≤k≤n
k even

(
n

k

)
2k −

∑
0≤k≤n
k odd

(
n

k

)
2k

=
n∑
k=0

(−1)k
(
n

k

)
2k

=
n∑
k=0

(
n

k

)
(−2)k

= (1 + (−2))n

= (−1)n.

We also have E(n) + U(n) =
∑n
k=0

(n
k

)
2n = (1 + 2)n = 3n. Solving for

E(n) gives

E(n) = 3n + (−1)n

2 . (C.8.2)

To make sure that we didn’t make any mistakes, it may be helpful to
check a few small cases. For n = 0, we have one even split (nobody on
either team), and (30 + (−1)0)/2 = 2/2 = 1. For n = 1, we have the
same even split, and (31 + (−1)1)/2 = (3 − 1)/2 = 1. For n = 2, we get
a five even splits ((∅, ∅), ({x} , {y}), ({y} , {x}), ({x, y} , ∅), (∅, {x, y})), and
(32 + (−1)2)/2 = (9 + 1)/2 = 5. This is not a proof that (C.8.2) will keep
working forever, but it does suggest that we didn’t screw up in some obvious
way.

C.8.3 Inflected sequences

Call a sequence of three natural numbers a0, a1, a2 inflected if a0 ≥ a1 ≤ a2
or a0 ≤ a1 ≥ a2.

As a function of n, how many such inflected sequences are there with
a1, a2, a3 ∈ [n]?

Solution

Let S be the set of triples (a0, a1, a2) in [n]3 with a0 ≥ a1 ≤ a2 and let T
be the set of triples with a0 ≤ a1 ≥ a2. Replacing each ai with (n− 1)− ai
gives a bijection between S and T , so |S| = |T |. Computing |T | is a little
easier, so we’ll do that first.

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 351

To compute |T |, pick a1 first. Then a0 and a2 can be any elements of
[n] that are less than or equal to a1. Summing over all possible values of a1
gives

n−1∑
i=0

(i+ 1)2 =
n∑
i=0

(i)2

= 1
3n

3 + 1
2n

2 + 1
6n.

The last step uses (6.4.2).
The number we want is |S ∪ T | = |S|+ |T | − |S ∩ T |. For a triple to be

in |S ∩ T |, we must have a0 = a1 = a2; there are n such triples. So we have

|S ∪ T | = 2
(1

3n
3 + 1

2n
2 + 1

6n
)
− n

= 2
3n

3 + n2 − 2
3n.

C.9 Assignment 9: due Thursday, 2013-11-21, at
5:00 pm

For problems that ask you to compute a value, closed-form expressions are
preferred, and you should justify your answers.

C.9.1 Guessing the median

The median of a set S of n distinct numbers, when n is odd, is the element
x of S with the property that exactly (n− 1)/2 elements of S are less than x
(which also implies that exactly (n− 1)/2 elements of S are greater than x).

Consider the following speedy but inaccurate algorithm for guessing the
median of a set S, when n = |S| is odd and n ≥ 3: choose a three-element
subset R of S uniformly at random, then return the median of R. What is
the probability, as a function of n, that the median of R is in fact the median
of S?

Solution

There are
(n

3
)

= n(n−1)(n−2)
6 choices for R, all of which are equally likely. So

we want to count the number of sets R for which median(R) = median(S).
Each such set contains median(S), one of the (n − 1)/2 elements of S

less than median(S), and one of the (n − 1)/2 elements of S greater than

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 352

median(S). So there are (n−1)2

4 choices of R that cause the algorithm to
work. The probability of picking one of these good sets is

(n− 1)2/4
n(n− 1)(n− 2)/6 = 3

2 ·
n− 1

n(n− 2) .

As a quick test, when n = 3, this evaluates to 3
2 ·

2
3·1 = 1, which is what

we’d expect given that there is only one three-element subset of S in this
case. This is also a case where the algorithm works much better than the
even dumber algorithm of just picking a single element of S at random,
which succeeds with probability 1/n, or 1/3 in this case. For larger n the
performance of median-of-three is less convincing, converging to a 3

2 .(1/n)
probability of success in the limit.

C.9.2 Two flushes

A standard poker deck has 52 cards, which are divided into 4 suits of 13
cards each. Suppose that we shuffle a poker deck so that all 52! permutations
are equally likely.3 We then deal the top 5 cards to you and the next 5 cards
to me.

Define a flush to be five cards from the same suit. Let A be the event
that you get a flush, and let B be the event that I get a flush.

1. What is Pr [B | A]?

2. Is this more or less than Pr [B]?

Solution

Recall that
Pr [B | A] = Pr [B ∩A]

Pr [A] .

Let’s start by calculating Pr [A]. For any single suit s, there are (13)5
ways to give you 5 cards from s, out of (52)5 ways to give you 5 cards,
assuming in both cases that we keep track of the order of the cards.4 So the
event As that you get only cards in s has probability

(13)5
(52)5

.

3This turns out to be pretty hard to do in practice [BD92], but we’ll suppose that we
can actually do it.

4If we don’t keep track of the order, we get
(13

5

)
choices out of

(52
5

)
possibilities; these

divide out to the same value.

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 353

Since there are four suits, and the events As are disjoint for each suit,
we get

Pr [A] =
∑
s

Pr [As] = 4 · (13)5
(52)5

.

For Pr [A ∩B], let Cst be the event that your cards are all from suit s
and mine are all from suit t. Then

Pr [Cst] =

(13)10
(52)10

if s = t, and
(13)5·(13)5

(52)10
if s 6= t.

Summing up all 16 cases gives

Pr [A ∩B] = 4 · (13)10 + 12 · (13)5 · (13)5
(52)10

.

Now divide to get

Pr [B | A] =

(4·(13)10+12·(13)5·(13)5
(52)10

)
(4·(13)5

(52)5

)
=

((13)10
(13)5

+ 3 · (13)5

)
((52)10

(52)5

)
= (8)5 + 3 · (13)5

(47)5
. (C.9.1)

Another way to get (C.9.1) is to argue that once you have five cards of a
particular suit, there are (47)5 equally probable choices for my five cards, of
which (8)5 give me five cards from your suit and 3 · (13)5 give me five cards
from one of the three other suits.

However we arrive at (C.9.1), we can evaluate it numerically to get

Pr [B | A] = (8)5 + 3 · (13)5
(47)5

= 8 · 7 · 6 · 5 · 4 + 3 · (13 · 12 · 11 · 10 · 8)
47 · 46 · 45 · 44 · 43

= 6720 + 3 · 154440
184072680

= 470040
184072680

= 3917
1533939

≈ 0.00255356.

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 354

This turns out to be slightly larger than the probability that I get a flush
without conditioning, which is

Pr [B] = 4 · (13)5
(52)5

= 4 · 154400
311875200

= 33
16660

≈ 0.00198079.

So Pr [B | A] is greater than Pr [B].
This is a little surprising. If you have a flush, it seems like there should

be fewer ways for me to make a flush. But what happens is that your
flush in spades (say) actually makes my flush in a non-spade suit more
likely—because there are fewer spades to dilute my potential heart, diamond,
or club flush—and this adds more to my chances than the unlikelihood of
getting a second flush in spaces subtracts.

C.9.3 Dice and more dice

Let n be a positive integer, and let D0, D1, . . . Dn be independent random
variables representing n-sided dice. Formally, Pr[Di = k] = 1/n for each i
and each k in {1, . . . , n}.

Let

S =
D0∑
i=1

Di.

As a function of n, what is E [S]?

APPENDIX C. SAMPLE ASSIGNMENTS FROM FALL 2013 355

Solution

Expand

E [S] = E

D0∑
i=1

Di

=

n∑
j=1

E

D0∑
i=1

Di

∣∣∣∣∣∣ D0 = j

 · Pr [D0 = j]

= 1
n

n∑
j=1

E

 j∑
i=1

Di

= 1
n

n∑
j=1

j∑
i=1

E [Di]

= 1
n

n∑
j=1

j∑
i=1

(
n+ 1

2

)

= 1
n

n∑
j=1

(
j · n+ 1

2

)

= n+ 1
2n

n∑
j=1

j

= n+ 1
2n · n(n+ 1)

2

= (n+ 1)2

4 .

Appendix D

Sample exams from Fall 2013

These are exams from the Fall 2013 version of CPSC 202. Some older exams
can be found in Appendices E and F.

D.1 CS202 Exam 1, October 17th, 2013
Write your answers on the exam. Justify your answers. Work alone. Do not
use any notes or books.

There are four problems on this exam, each worth 20 points, for a total
of 80 points. You have approximately 75 minutes to complete this exam.

D.1.1 A tautology (20 points)

Use a truth table to show that the following is a tautology:

P ∨ (P ↔ Q) ∨Q

Solution
P Q P ↔ Q P ∨ (P ↔ Q) P ∨ (P ↔ Q) ∨Q
0 0 1 1 1
0 1 0 0 1
1 0 0 1 1
1 1 1 1 1

356

APPENDIX D. SAMPLE EXAMS FROM FALL 2013 357

D.1.2 A system of equations (20 points)

Show that the equations

x+ y = 0 (mod m)
x− y = 0 (mod m)

have exactly one solution with 0 ≤ x, y < m if and only if m is odd.

Solution

Add the equations together to get

2x = 0 (mod m)

If m is odd, then gcd(m, 2) = 1 and 2 has a multiplicative inverse in
Zm (which happens to be (m+ 1)/2). So we can multiply both sides of the
equation by this inverse to get x = 0 (mod m). Having determined x, we
can then use either of the given equations to compute y = 0 (mod m), giving
the unique solution.

If m is even, then x = y = 0 and x = y = m/2 are two distinct solutions
that satisfy the given equations.

D.1.3 A sum of products (20 points)

Let n ∈ N. Give a closed-form expression for

n∑
i=1

i∏
j=1

2.

Justify your answer.

APPENDIX D. SAMPLE EXAMS FROM FALL 2013 358

Solution

Using the definition of exponentiation and the geometric series formula, we
can compute

n∑
i=1

i∏
j=1

2 =
n∑
i=1

2i

=
n−1∑
i=0

2i+1

= 2
n−1∑
i=0

2i

= 2 · 2n − 1
2− 1

= 2 · (2n − 1)
= 2n+1 − 2.

D.1.4 A subset problem (20 points)

Let A and B be sets. Show that if A∩C ⊆ B ∩C for all sets C, then A ⊆ B.

Solution

Suppose that for all C, A ∩ C ⊆ B ∩ C. In particular, let C = A. Then
A = A ∩ A ⊆ B ∩ A. If x ∈ A, then x ∈ B ∩ A, giving x ∈ B. So A ⊆ B.
(Other choices for C also work.)

An alternative proof proceeds by contraposition: Suppose A 6⊆ B. Then
there is some x in A that is not in B. But then A∩{x} = {x} and B∩{x} = ∅,
so A ∩ {x} 6⊆ B ∩ {x}.

D.2 CS202 Exam 2, December 4th, 2013
Write your answers on the exam. Justify your answers. Work alone. Do not
use any notes or books.

There are four problems on this exam, each worth 20 points, for a total
of 80 points. You have approximately 75 minutes to complete this exam.

APPENDIX D. SAMPLE EXAMS FROM FALL 2013 359

D.2.1 Minimum elements (20 points)

Let (S,≤) be a partially-ordered set. Recall that for any subset T of S, x is
a minimum element of T if x is in T and x ≤ y for all y in T .

Prove or disprove: If every nonempty subset of S has a minimum element,
then S is totally ordered.

Solution

We need to show that any two elements of S are comparable.
If S is empty, the claim holds vacuously.
Otherwise, let x and y be elements of S. Then {x, y} is a nonempty

subset of S, and so it has a minimum element z. If z = x, then x ≤ y; if
z = y, then y ≤ x. In either case, x and y are comparable.

D.2.2 Quantifiers (20 points)

Show that exactly one of the following two statements is true.

∀x ∈ Z : ∃y ∈ Z : x < y (D.2.1)
∃x ∈ Z : ∀y ∈ Z : x < y (D.2.2)

Solution

First, we’ll show that (D.2.1) is true. Given any x ∈ Z, choose y = x + 1.
Then x < y.

Next, we’ll show that (D.2.2) is not true, by showing that its negation
is true. Negating (D.2.2) gives ∀x ∈ Z : ∃y ∈ Z : x 6< y. Given any x ∈ Z,
choose y = x. Then x 6< y.

D.2.3 Quadratic matrices (20 points)

Prove or disprove: For all n× n matrices A and B with real elements,

(A+B)2 = A2 + 2AB +B2. (D.2.3)

Solution

We don’t really expect this to be true, because the usual expansion (A+B)2 =
A2 +AB +BA+B2 doesn’t simplify further since AB does not equal BA
in general.

APPENDIX D. SAMPLE EXAMS FROM FALL 2013 360

In fact, we can use this as the basis for a disproof. Suppose

(A+B)2 = A2 + 2AB +B2.

Then

A2 + 2AB +B2 = A2 +AB +BA+B2.

Subtract A2 +AB +B2 from both sides to get

AB = BA.

This implies (A+B)2 = A2 + 2AB+B2 only if A and B commute. Since
there exists at least one pair of square real matrices A and B that don’t
commute, (D.2.3) does not hold in general.

For a more direct disproof, we can choose any pair of square real matrices
that don’t commute, and show that they give different values for (A+B)2

and A2 + 2AB +B2. For example, let

A =
[
1 1
1 1

]
,

B =
[
1 −1
1 1

]
.

Then

(A+B)2 =
[
2 0
2 2

]2

=
[
0 4
8 4

]
,

but

A2 + 2AB +B2 =
[
1 1
1 1

]2

+ 2
[
1 1
1 1

] [
1 −1
1 1

]
+
[
1 −1
1 1

]2

=
[
2 2
2 2

]
+ 2

[
2 0
2 0

]
+
[
0 −2
2 0

]

=
[
6 0
8 2

]
.

APPENDIX D. SAMPLE EXAMS FROM FALL 2013 361

D.2.4 Low-degree connected graphs (20 points)

How many connected graphs contain no vertices with degree greater than
one?

Solution

There are three: The empty graph, the graph with one vertex, and the graph
with two vertices connected by an edge. These enumerate all connected
graphs with two vertices or fewer (the other two-vertex graph, with no edge,
is not connected).

To show that these are the only possibilities, suppose that we have a
connected graph G with more than two vertices. Let u be one of these
vertices. Let v be a neighbor of u (if u has no neighbors, then there is no
path from u to any other vertex, and G is not connected). Let w be some
other vertex. Since G is connected, there is a path from u to w. Let w′ be
the first vertex in this path that is not u or v. Then w′ is adjacent to u or v;
in either case, one of u or v has degree at least two.

Appendix E

Midterm exams from earlier
semesters

Note that topics covered may vary from semester to semester, so the ap-
pearance of a particular topic on one of these sample midterms does not
necessarily mean that it may appear on a current exam.

E.1 Midterm Exam, October 12th, 2005
Write your answers on the exam. Justify your answers. Work alone. Do not
use any notes or books.

There are four problems on this exam, each worth 20 points, for a total
of 80 points. You have approximately 50 minutes to complete this exam.

E.1.1 A recurrence (20 points)

Give a simple formula for T (n), where:

T (0) = 1.
T (n) = 3T (n− 1) + 2n,when n > 0.

Solution

Using generating functions

Let F (z) =
∑∞
n=0 T (n)zn, then

F (z) = 3zF (z) + 1
1− 2z .

362

APPENDIX E. MIDTERM EXAMS FROM EARLIER SEMESTERS 363

Solving for F gives

F (z) = 1
(1− 2z)(1− 3z)

= −2
1− 2z + 3

1− 3z .

From the generating function we can immediately read off

T (n) = 3 · 3n − 2 · 2n = 3n+1 − 2n+1.

Without using generating functions

It is possible to solve this problem without generating functions, but it’s
harder. Here’s one approach based on forward induction. Start by computing
the first few values of T (n). We’ll avoid reducing the expressions to make it
easier to spot a pattern.

T (0) = 1
T (1) = 3 + 2
T (2) = 32 + 3 · 2 + 22

T (3) = 33 + 32 · 2 + 3 · 22 + 23

T (4) = 34 + 33 · 2 + 32 · 22 + 3 · 23 + 24

At this point we might guess that

T (n) =
n∑
k=0

3n−k2k = 3n
n∑
k=0

(2/3)k = 3n
(

1− (2/3)n+1

1− (2/3)

)
= 3n+1 − 2n+1.

A guess is not a proof; to prove that this guess works we verify T (0) =
31 − 21 = 3 − 2 = 1 and T (n) = 3T (n − 1) + 2n = 3(3n − 2n) + 2n =
3n+1 − 2 · 2n = 3n+1 − 2n+1.

E.1.2 An induction proof (20 points)

Prove by induction on n that n! > 2n for all integers n ≥ n0, where n0 is an
integer chosen to be as small as possible.

Solution

Trying small values of n gives 0! = 1 = 20 (bad), 1! = 1 < 21 (bad),
2! = 2 < 22 (bad), 3! = 6 < 23 (bad), 4! = 24 > 24 = 16 (good). So we’ll
guess n0 = 4 and use the n = 4 case as a basis.

For larger n, we have n! = n(n− 1)! > n2n−1 > 2 · 2n−1 = 2n.

APPENDIX E. MIDTERM EXAMS FROM EARLIER SEMESTERS 364

E.1.3 Some binomial coefficients (20 points)

Prove that k
(n
k

)
= n

(n−1
k−1
)
when 1 ≤ k ≤ n.

Solution

There are several ways to do this. The algebraic version is probably cleanest.

Combinatorial version

The LHS counts the way to choose k of n elements and then specially mark
one of the k. Alternatively, we could choose the marked element first (n
choices) and then choose the remaining k − 1 elements from the remaining
n− 1 elements (

(n−1
k−1
)
choices); this gives the RHS.

Algebraic version

Compute k
(n
k

)
= k · n!

k!(n−k)! = n!
(k−1)!(n−k)! = n · (n−1)!

(k−1)!((n−1)−(k−1))! = n
(n−1
k−1
)
.

Generating function version

Observe that
∑n
k=0 k

(n
k

)
zk = z d

dz (1+z)n = zn(1+z)n−1 =
∑n−1
k=0 n

(n−1
k

)
zk+1 =∑n

k=1 n
(n−1
k−1
)
zk. Now match zk coefficients to get the desired result.

E.1.4 A probability problem (20 points)

Suppose you flip a fair coin n times, where n ≥ 1. What is the probability
of the event that both of the following hold: (a) the coin comes up heads at
least once and (b) once it comes up heads, it never comes up tails on any
later flip?

Solution

For each i ∈ {1 . . . n}, let Ai be the event that the coin comes up heads for
the first time on flip i and continues to come up heads thereafter. Then
the desired event is the disjoint union of the Ai. Since each Ai is a single
sequence of coin-flips, each occurs with probability 2−n. Summing over all i
gives a total probability of n2−n.

APPENDIX E. MIDTERM EXAMS FROM EARLIER SEMESTERS 365

E.2 Midterm Exam, October 24th, 2007
Write your answers on the exam. Justify your answers. Work alone. Do not
use any notes or books.

There are four problems on this exam, each worth 20 points, for a total
of 80 points. You have approximately 50 minutes to complete this exam.

E.2.1 Dueling recurrences (20 points)

Let 0 ≤ S(0) ≤ T (0), and suppose we have the recurrences

S(n+ 1) = aS(n) + f(n)
T (n+ 1) = bT (n) + g(n),

where 0 ≤ a ≤ b and 0 ≤ f(n) ≤ g(n) for all n ∈ N.
Prove that S(n) ≤ T (n) for all n ∈ N.

Solution

We’ll show the slightly stronger statement 0 ≤ S(n) ≤ T (n) by induction on
n. The base case n = 0 is given.

Now suppose 0 ≤ S(n) ≤ T (n); we will show the same holds for n+ 1.
First observe S(n+ 1) = aS(n) +f(n) ≥ 0 as each variable on the right-hand
side is non-negative. To show T (n+ 1) ≥ S(n+ 1), observe

T (n+ 1) = bT (n) + g(n)
≥ aT (n) + f(n)
≥ aS(n) + f(n)
= S(n+ 1).

Note that we use the fact that 0 ≤ T (n) (from the induction hypothesis)
in the first step and 0 ≤ a in the second. The claim does not go through
without these assumptions, which is why using S(n) ≤ T (n) by itself as the
induction hypothesis is not enough to make the proof work.

E.2.2 Seating arrangements (20 points)

A group of k students sit in a row of n seats. The students can choose
whatever seats they wish, provided: (a) from left to right, they are seated in
alphabetical order; and (b) each student has an empty seat immediately to
his or her right.

APPENDIX E. MIDTERM EXAMS FROM EARLIER SEMESTERS 366

For example, with 3 students A, B, and C and 7 seats, there are exactly 4
ways to seat the students: A-B-C–, A-B–C-, A–B-C-, and -A-B-C-.

Give a formula that gives the number of ways to seat k students in n
seats according to the rules given above.

Solution

The basic idea is that we can think of each student and the adjacent empty
space as a single width-2 unit. Together, these units take up 2k seats, leaving
n − 2k extra empty seats to distribute between the students. There are a
couple of ways to count how to do this.

Combinatorial approach

Treat each of the k student-seat blocks and n− 2k extra seats as filling one
of k + (n− 2k) = n− k slots. There are exactly

(n−k
k

)
ways to do this.

Generating function approach

Write z+z2 for the choice between a width-1 extra seat and a width-2 student-
seat block. For a row of n− k such things, we get the generating function
(z + z2)n−k = zn−k(1 + z)n−k = zn−k

∑n−k
i=0

(n−k
i

)
zi =

∑n−k
i=0

(n−k
i

)
zn−k+i.

The zn coefficient is obtained when i = k, giving
(n−k
k

)
ways to fill out

exactly n seats.

E.2.3 Non-attacking rooks (20 points)

Place n rooks at random on an n × n chessboard (i.e., an n × n grid), so
that all

(n2

n

)
placements are equally likely. What is the probability of the

event that every row and every column of the chessboard contains exactly
one rook?

Solution

We need to count how many placements of rooks there are that put exactly
one rook per row and exactly one rook per column. Since we know that
there is one rook per row, we can specify where these rooks go by choosing
a unique column for each row. There are n choices for the first row, n− 1
remaining for the second row, and so on, giving n(n− 1) · · · 1 = n! choices
altogether. So the probability of the event is n!/

(n2

n

)
= (n2 − n)!/(n2)!.

APPENDIX E. MIDTERM EXAMS FROM EARLIER SEMESTERS 367

E.2.4 Subsets (20 points)

Let A ⊆ B.

1. Prove or disprove: There exists an injection f : A→ B.

2. Prove or disprove: There exists a surjection g : B → A.

Solution

1. Proof: Let f(x) = x. Then f(x) = f(y) implies x = y and f is
injective.

2. Disproof: Let B be nonempty and let A = ∅. Then there is no function
at all from B to A, surjective or not.

E.3 Midterm Exam, October 24th, 2008
Write your answers on the exam. Justify your answers. Work alone. Do not
use any notes or books.

There are four problems on this exam, each worth 20 points, for a total
of 80 points. You have approximately 50 minutes to complete this exam.

E.3.1 Some sums (20 points)

Let a0, a1, . . . and b0, b1, . . . be sequences such that for i in N, ai ≤ bi.
Let Ai =

∑i
j=0 aj and let Bi =

∑i
j=0 bj .

Prove or disprove: For all i in N, Ai ≤ Bi.

Solution

Proof: By induction on i. For i = 0 we have A0 = a0 ≤ b0 = B0. Now
suppose Ai ≤ Bi. Then Ai+1 =

∑i+1
j=0 aj =

∑i
j=0 aj + ai+1 = Ai + ai+1 ≤

Bi + bi+1 =
∑i
j=0 bj + bj+1 =

∑i+1
j=0 bj = Bj .

E.3.2 Nested ranks (20 points)

You are recruiting people for a secret organization, from a population of n
possible recruits. Out of these n possible recruits, some subset M will be
members. Out of this subset M , some further subset C will be members of
the inner circle. Out of this subset C, some further subset X will be Exalted

APPENDIX E. MIDTERM EXAMS FROM EARLIER SEMESTERS 368

Grand High Maharajaraja Panjandrums of Indifference. It is possible that
any or all of these sets will be empty.

If the roster of your organization gives the members of the sets M , C,
and X, and if (as usual) order doesn’t matter within the sets, how many
different possible rosters can you have?

Solution

There is an easy way to solve this, and a hard way to solve this.
Easy way: For each possible recruit x, we can assign x one of four states:

non-member, member but not inner circle member, inner circle member but
not EGHMPoI, or EGHMPoI. If we know the state of each possible recruit,
that determines the contents of M , C, X and vice versa. It follows that
there is a one-to-one mapping between these two representations, and that
the number of rosters is equal to the number of assignments of states to all
n potential recruits, which is 4n.

Hard way: By repeated application of the binomial theorem. Expressing
the selection process in terms of choosing nested subsets of m, c, and x
members, the number of possible rosters is

n∑
m=0

{(
n

m

)
m∑
c=0

[(
m

c

)
c∑

x=0

(
c

x

)]}
=

n∑
m=0

{(
n

m

)
m∑
c=0

(
m

c

)
2c
}

=
n∑

m=0

(
n

m

)
(1 + 2)m

=
n∑

m=0

(
n

m

)
3m

= (1 + 3)n

= 4n.

E.3.3 Nested sets (20 points)

Let A, B, and C be sets.

1. Prove or disprove: If A ∈ B, and B ⊆ C, then A ⊆ C.

2. Prove or disprove: If A ⊆ B, and B ⊆ C, then A ⊆ C.

Solution

1. Disproof: Let A = {∅}, B = {A} = {{∅}}, and C = B. Then A ∈ B
and B ⊆ C, but A 6⊆ C, because ∅ ∈ A but ∅ 6∈ C.

APPENDIX E. MIDTERM EXAMS FROM EARLIER SEMESTERS 369

2. Proof: Let x ∈ A. Then since A ⊆ B, we have x ∈ B, and since B ⊆ C,
we have x ∈ C. It follows that every x in A is also in C, and that A is
a subset of C.

E.3.4 An efficient grading method (20 points)

A test is graded on a scale of 0 to 80 points. Because the grading is
completely random, your grade can be represented by a random variable X
with 0 ≤ X ≤ 80 and E[X] = 60.

1. What is the maximum possible probability that X = 80?

2. Suppose that we change the bounds to 20 ≤ X ≤ 80, but E[X] is still
60. Now what is the maximum possible probability that X = 80?

Solution

1. Here we apply Markov’s inequality: since X ≥ 0, we have Pr[X ≥
80] ≤ E[X]

80 = 60
80 = 3/4. This maximum is achieved exactly by letting

X = 0 with probability 1/4 and 80 with probability 3/4, giving E[X] =
(1/4) · 0 + (3/4) · 80 = 60.

2. Raising the minimum grade to 20 knocks out the possibility of getting 0,
so our previous distribution doesn’t work. In this new case we can apply
Markov’s inequality to Y = X − 20 ≥ 0, to get Pr[X ≥ 80] = Pr[Y ≥
60] ≤ E[Y]

60 = 40
60 = 2/3. So the extreme case would seem to be that we

get 20 with probability 1/3 and 80 with probability 2/3. It’s easy to
check that we then get E[X] = (1/3) · 20 + (2/3) · 80 = 180/3 = 60. So
in fact the best we can do now is a probability of 2/3 of getting 80,
less than we had before.

E.4 Midterm exam, October 21st, 2010
Write your answers on the exam. Justify your answers. Work alone. Do not
use any notes or books.

There are four problems on this exam, each worth 20 points, for a total
of 80 points. You have approximately 75 minutes to complete this exam.

APPENDIX E. MIDTERM EXAMS FROM EARLIER SEMESTERS 370

E.4.1 A partial order (20 points)

Let S ⊆ N, and for any x, y ∈ N, define x � y if and only if there exists
z ∈ S such that x+ z = y.

Show that if � is a partial order, then (a) 0 is in S and (b) for any x, y
in S, x+ y is in S.

Solution

If � is a partial order, then by reflexivity we have x � x for any x. But
then there exists z ∈ S such that x+ z = x, which can only happen if z = 0.
Thus 0 ∈ S.

Now suppose x and y are both in S. Then 0 + x = x implies 0 � x, and
x+ y = x+ y implies x � x+ y. Transitivity of � gives 0 � x+ y, which
occurs only if some z such that 0 + z = x + y is in S. The only such z is
x+ y, so x+ y is in S.

E.4.2 Big exponents (20 points)

Let p be a prime, and let 0 ≤ a < p. Show that a2p−1 = a (mod p).

Solution

Write a2p−1 = ap−1ap−1a. If a 6= 0, Euler’s Theorem (or Fermat’s Little
Theorem) says ap−1 = 1 (mod p), so in this case ap−1ap−1a = a (mod p). If
a = 0, then (since 2p− 1 6= 0), a2p−1 = 0 = a (mod p).

E.4.3 At the playground (20 points)

Let L(x, y) represent the statement “x likes y” and let T (x) represent the
statement “x is tall,” where x and y range over a universe consisting of all
children on a playground. Let m be “Mary,” one of the children.

1. Translate the following statement into predicate logic: “If x is tall,
then Mary likes x if and only if x does not like x.”

2. Show that if the previous statement holds, Mary is not tall.

Solution

1. ∀x (T (x)⇒ (L(m,x)⇔ ¬L(x, x))).

APPENDIX E. MIDTERM EXAMS FROM EARLIER SEMESTERS 371

2. Suppose the previous statement is true. Let x = m, then T (m) ⇒
(L(m,m) ⇔ ¬L(m,m)). But L(m,m) ⇔ ¬L(m,m) is false, so T (m)
must also be false.

E.4.4 Gauss strikes back (20 points)

Give a closed-form formula for
∑b
k=a k, assuming 0 ≤ a ≤ b.

Solution

Here are three ways to do this:

1. Write
∑b
k=a k as

∑b
k=1 k−

∑a−1
k=1 k and then use the formula

∑n
k=1 k =

n(n+1)
2 to get

b∑
k=a

k =
b∑

k=1
k −

a−1∑
k=1

k

= b(b+ 1)
2 − (a− 1)a

2

= b(b+ 1)− a(a− 1)
2 .

2. Use Gauss’s trick, and compute

2
b∑

k=a
k =

b∑
k=a

k +
b∑

k=a
(b+ a− k)

=
b∑

k=a
(k + b+ a− k)

=
b∑

k=a
(b+ a)

= (b− a+ 1)(b+ a).

Dividing both sides by 2 gives (b−a+1)(b+a)
2 .

3. Write
∑b
k=a k as

∑b−a
k=0(a+ k) = (b− a+ 1)a+

∑b−a
k=0 k. Then use the

sum formula as before to turn this into (b− a+ 1)a+ (b−a)(b−a+1)
2 .

Though these solutions appear different, all of them can be expanded to
b2−a2+a+b

2 .

Appendix F

Final exams from earlier
semesters

Note that topics may vary from semester to semester, so the appearance
of a particular topic on one of these exams does not necessarily indicate
that it will appear on the second exam for the current semester. Note also
that these exams were designed for a longer time slot—and were weighted
higher—than the current semester’s exams; the current semester’s exams are
likely to be substantially shorter.

F.1 CS202 Final Exam, December 15th, 2004
Write your answers in the blue book(s). Justify your answers. Work alone.
Do not use any notes or books.

There are seven problems on this exam, each worth 20 points, for a total
of 140 points. You have approximately three hours to complete this exam.

F.1.1 A multiplicative game (20 points)

Consider the following game: A player starts with a score of 0. On each turn,
the player rolls two dice, each of which is equally likely to come up 1, 2, 3,
4, 5, or 6. They then take the product xy of the two numbers on the dice.
If the product is greater than 20, the game ends. Otherwise, they add the
product to their score and take a new turn. The player’s score at the end of
the game is thus the sum of the products of the dice for all turns before the
first turn on which they get a product greater than 20.

372

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 373

1. What is the probability that the player’s score at the end of the game
is zero?

2. What is the expectation of the player’s score at the end of the game?

Solution

1. The only way to get a score of zero is to lose on the first roll. There
are 36 equally probable outcomes for the first roll, and of these the
six outcomes (4,6), (5,5), (5,6), (6,4), (6,5), and (6,6) yield a product
greater than 20. So the probability of getting zero is 6/36 = 1/6.

2. To compute the total expected score, let us first compute the expected
score for a single turn. This is

1
36

6∑
i=1

6∑
j=1

ij[ij ≤ 20].

where [ij ≤ 20] is the indicator random variable for the event that
ij ≤ 20.
I don’t know of a really clean way to evaluate the sum, but we can
expand it as

(3∑
i=1

i

) 6∑
j=1

j

+ 4
5∑
j=1

j + 5
4∑
j=1

j + 6
3∑
j=1

j

= 6 · 21 + 4 · 15 + 5 · 10 + 6 · 6
= 126 + 60 + 50 + 36
= 272.

So the expected score per turn is 272/36 = 68/9.
Now we need to calculate the expected total score; call this value S.
Assuming we continue after the first turn, the expected total score for
the second and subsequent turns is also S, since the structure of the
tail of the game is identical to the game as a whole. So we have

S = 68/9 + (5/6)S,

which we can solve to get S = (6 · 68)/9 = 136/3.

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 374

F.1.2 An equivalence in space (20 points)

Let V be a k-dimensional vector space over the real numbers R with a
standard basis ~xi. Recall that any vector ~z in V can be represented uniquely
as
∑k
i=1 zi~xi. Let f : V → R be defined by f(~z) =

∑k
i=1 |zi|, where the zi

are the coefficients of ~z in the standard representation. Define a relation
∼ on V × V by ~z1 ∼ ~z2 if and only if f(~z1) = f(~z2). Show that ∼ is an
equivalence relation, i.e., that it is reflexive, symmetric, and transitive.

Solution

Both the structure of the vector space and the definition of f are irrelevant;
the only fact we need is that ~z1 ∼ ~z2 if and only if f(~z1) = f(~z2). Thus for
all ~z, ~z ∼ ~z since f(~z) = f(~z (reflexivity); for all ~y and ~z, if ~y ∼ ~z, then
f(~y) = f(~z) implies f(~z) = f(~y) implies ~z ∼ ~y (symmetry); and for all ~x, ~y,
and ~z, if ~x ∼ ~y and ~y ∼ ~z, then f(~x) = f(~y) and f(~y) = f(~z), so f(~x) = f(~z)
and ~x ∼ ~z (transitivity).

F.1.3 A very big fraction (20 points)

Use the fact that p = 224036583 − 1 is prime to show that

9224036582 − 9
224036583 − 1

is an integer.

Solution

Let’s save ourselves a lot of writing by letting x = 24036583, so that p = 2x−1
and the fraction becomes

92x−1 − 9
p

.

To show that this is an integer, we need to show that p divides the
denominator, i.e., that

92x−1 − 9 = 0 (mod p).

We’d like to attack this with Fermat’s Little Theorem, so we need to get
the exponent to look something like p− 1 = 2x − 2. Observe that 9 = 32, so

92x−1 = (32)2x−1 = 32x = 32x−2 · 32 = 3p−1 · 32.

But 3p−1 = 1 (mod p), so we get 92x−1 = 32 = 9 (mod p), and thus
92x−1 − 9 = 0 (mod p) as desired.

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 375

F.1.4 A pair of odd vertices (20 points)

Let G be a simple undirected graph (i.e., one with no self-loops or parallel
edges), and let u be a vertex in G with odd degree. Show that there is
another vertex v 6= u in G such that (a) v also has odd degree, and (b) there
is a path from u to v in G.

Solution

Let G′ be the connected component of u in G. Then G′ is itself a graph, and
the degree of any vertex is the same in G′ as in G. Since the sum of all the
degrees of vertices in G′ must be even by the Handshaking Lemma, there
cannot be an odd number of odd-degree vertices in G′, and so there is some
v in G′ not equal to u that also has odd degree. Since G′ is connected, there
exists a path from u to v.

F.1.5 How many magmas? (20 points)

Recall that a magma is an algebra consisting of a set of elements and one
binary operation, which is not required to satisfy any constraints whatsoever
except closure. Consider a set S of n elements. How many distinct magmas
are there that have S as their set of elements?

Solution

Since the carrier is fixed, we have to count the number of different ways of
defining the binary operation. Let’s call the operation f . For each ordered
pair of elements (x, y) ∈ S × S, we can pick any element z ∈ S for the value
of f(x, y). This gives n choices for each of the n2 pairs, which gives nn2

magmas on S.

F.1.6 A powerful relationship (20 points)

Recall that the powerset P(S) of a set S is the set of sets {A : A ⊆ S}.
Prove that if S ⊆ T , then P(S) ⊆ P(T).

Solution

Let A ∈ P(S); then by the definition of P(S) we have A ⊆ S. But then
A ⊆ S ⊆ T implies A ⊆ T , and so A ∈ P(T). Since A was arbitrary,
A ∈ P(T) holds for all A in P(S), and we have P(S) ⊆ P(T).

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 376

F.1.7 A group of archaeologists (20 points)

Archaeologists working deep in the Upper Nile Valley have discovered a
curious machine, consisting of a large box with three levers painted red, yellow,
and blue. Atop the box is a display that shows one of set of n hieroglyphs.
Each lever can be pushed up or down, and pushing a lever changes the
displayed hieroglyph to some other hieroglyph. The archaeologists have
determined by extensive experimentation that for each hieroglyph x, pushing
the red lever up when x is displayed always changes the display to the same
hieroglyph f(x), and pushing the red lever down always changes hieroglyph
f(x) to x. A similar property holds for the yellow and blue levers: pushing
yellow up sends x to g(x) and down sends g(x) to x; and pushing blue up
sends x to h(x) and down sends h(x) to x.

Prove that there is a finite number k such that no matter which hieroglyph
is displayed initially, pushing any one of the levers up k times leaves the
display with the same hieroglyph at the end.

Clarification added during exam: k > 0.

Solution

Let H be the set of hieroglyphs, and observe that the map f : H → H
corresponding to pushing the red lever up is invertible and thus a permutation.
Similarly, the maps g and h corresponding to yellow or blue up-pushes are
also permutations, as are the inverses f−1, g−1, and h−1 corresponding to
red, yellow, or blue down-pushes. Repeated pushes of one or more levers
correspond to compositions of permutations, so the set of all permutations
obtained by sequences of zero or more pushes is the subgroup G of the
permutation group S|H| generated by f , g, and h.

Now consider the cyclic subgroup 〈f〉 of G generated by f alone. Since
G is finite, there is some index m such that fm = e. Similarly there are
indices n and p such that gn = e and hp = e. So pushing the red lever up
any multiple of k times restores the initial state, as does pushing the yellow
lever up any multiple of n times or the blue lever up any multiple of p times.
Let k = mnp. Then k is a multiple of m, n, and p, and pushing any single
lever up k times leaves the display in the same state.

F.2 CS202 Final Exam, December 16th, 2005
Write your answers in the blue book(s). Justify your answers. Work alone.
Do not use any notes or books.

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 377

There are six problems on this exam, each worth 20 points, for a total of
120 points. You have approximately three hours to complete this exam.

F.2.1 Order (20 points)

Recall that the order of an element x of a group is the least positive integer
k such that xk = e, where e is the identity, or ∞ if no such k exists.

Prove or disprove: In the symmetric group Sn of permutations on n
elements, the order of any permutation is at most

(n
2
)
.

Clarifications added during exam

• Assume n > 2.

Solution

Disproof: Consider the permutation (1 2)(3 4 5)(6 7 8 9 10)(11 12 13 14 15
16 17) in S17. This has order 2 · 3 · 5 · 7 = 210 but

(17
2
)

= 17·16
2 = 136.

F.2.2 Count the subgroups (20 points)

Recall that the free group over a singleton set {a} consists of all words of the
form ak, where k is an integer, with multiplication defined by akam = ak+m.

Prove or disprove: The free group over {a} has exactly one finite subgroup.

Solution

Proof: Let F be the free group defined above and let S be a subgroup of F .
Suppose S contains ak for some k 6= 0. Then S contains a2k, a3k, . . . because
it is closed under multiplication. Since these elements are all distinct, S is
infinite.

The alternative is that S does not contain ak for any k 6= 0; this leaves
only a0 as possible element of S, and there is only one such subgroup: the
trivial subgroup {a0}.

F.2.3 Two exits (20 points)

Let G = (V,E) be a nonempty connected undirected graph with no self-loops
or parallel edges, in which every vertex has degree 4. Prove or disprove: For
any partition of the vertices V into two nonempty non-overlapping subsets
S and T , there are at least two edges that have one endpoint in S and one
in T .

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 378

Solution

Proof: Because G is connected and every vertex has even degree, there is
an Euler tour of the graph (a cycle that uses every edge exactly once). Fix
some particular tour and consider a partition of V into two sets S and T .
There must be at least one edge between S and T , or G is not connected;
but if there is only one, then the tour can’t return to S or T once it leaves.
It follows that there are at least 2 edges between S and T as claimed.

F.2.4 Victory (20 points)

A sabermetrician wishes to test the hypothesis that a set of n baseball teams
are stricty ranked, so that no two teams have the same rank and if some
team A has a higher rank than some team B, A will always beat B in a
7-game series. To test this hypothesis, the sabermetrician has each team
play a 7-game series against each other team.

Suppose that the teams are in fact all equally incompetent and that the
winner of each series is chosen by an independent fair coin-flip. What is the
probability that the results will nonetheless be consistent with some strict
ranking?

Solution

Each ranking is a total order on the n teams, and we can describe such
a ranking by giving one of the n! permutations of the teams. These in
turn generate n! distinct outcomes of the experiment that will cause the
sabermetrician to believe the hypothesis. To compute the probability that one
of these outcomes occurs, we must divide by the total number of outcomes,
giving

Pr [strict ranking] = n!
2(n2)

.

F.2.5 An aggressive aquarium (20 points)

A large number of juvenile piranha, weighing 1 unit each, are placed in an
aquarium. Each day, each piranha attempts to eat one other piranha. If
successful, the eater increases its weight to the sum of its previous weight
and the weight of its meal (and the eaten piranha is gone); if unsuccessful,
the piranha remains at the same weight.

Prove that after k days, no surviving piranha weighs more than 2k units.

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 379

Clarifications added during exam

• It is not possible for a piranha to eat and be eaten on the same day.

Solution

By induction on k. The base case is k = 0, when all piranha weigh exactly
20 = 1 unit. Suppose some piranha has weight x ≤ 2k after k days. Then
either its weight stays the same, or it successfully eats another piranha of
weight y ≤ 2k increases its weight to x+ y ≤ 2k + 2k = 2k+1. In either case
the claim follows for k + 1.

F.2.6 A subspace of matrices (20 points)

Recall that a subspace of a vector space is a set that is closed under vector
addition and scalar multiplication. Recall further that the subspace generated
by a set of vector space elements is the smallest such subspace, and its
dimension is the size of any basis of the subspace.

Let A be the 2-by-2 matrix (
1 1
0 1

)

over the reals, and consider the subspace S of the vector space of 2-by-2
real matrices generated by the set {A,A2, A3, . . .}. What is the dimension
of S?

Solution

First let’s see what Ak looks like. We have

A2 =
(

1 1
0 1

)(
1 1
0 1

)
=
(

1 2
0 1

)

A3 =
(

1 1
0 1

)(
1 2
0 1

)
=
(

1 3
0 1

)
and in general we can show by induction that

Ak =
(

1 1
0 1

)(
1 k − 1
0 1

)
=
(

1 k
0 1

)
.

Observe now that for any k,

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 380

Ak =
(

1 k
0 1

)
= (k−1)

(
1 2
0 1

)
−(k−2)

(
1 1
0 1

)
= (k−1)A2−(k−2)A.

It follows that {A,A2} generates all the Ak and thus generates any linear
combination of the Ak as well. It is easy to see that A and A2 are linearly
independent: if c1A + c2A

2 = 0, we must have (a) c1 + c2 = 0 (to cancel
out the diagonal entries) and (b) c1 + 2c2 = 0 (to cancel out the nonzero
off-diagonal entry). The only solution to both equations is c1 = c2 = 0.

Because {A,A2} is a linearly independent set that generates S, it is a
basis, and S has dimension 2.

F.3 CS202 Final Exam, December 20th, 2007
Write your answers in the blue book(s). Justify your answers. Work alone.
Do not use any notes or books.

There are six problems on this exam, each worth 20 points, for a total of
120 points. You have approximately three hours to complete this exam.

F.3.1 A coin-flipping problem (20 points)

A particularly thick and lopsided coin comes up heads with probability
pH , tails with probability pT , and lands on its side with probability pS =
1− (pH + pT). Suppose you flip the coin repeatedly. What is the probability
that it comes up heads twice in a row at least once before the first time it
comes up tails?

Solution

Let p be the probability of the event W that the coin comes up heads twice
before coming up tails. Consider the following mutually-exclusive events for
the first one or two coin-flips:

Event A Pr[A] Pr[W |A]
HH p2

H 1
HT pHpT 0
HS pHpS p
T pT 0
S pS p

Summing over all cases gives

p = p2
H + pHpSp+ pSp,

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 381

which we can solve for p to get

p = p2
H

1− pHpS − pS
= p2

H

pH + pT − pHpS
= p2

H

pT + pH(pH + pT) = p2
H

pT + pHpT + p2
H

.

(Any of these is an acceptable answer.)

F.3.2 An ordered group (20 points)

Let G be a group and ≤ a partial order on the elements of G such that for
all x, y in G, x ≤ xy. How many elements does G have?

Solution

The group G has exactly one element.
First observe that G has at least one element, because it contains an

identity element e.
Now let x and y be any two elements of G. We can show x ≤ y, because

y = x(x−1y). Similarly, y ≤ x = y(y−1x). But then x = y by antisymmetry.
It follows that all elements of G are equal, i.e., that G has at most one
element.

F.3.3 Weighty vectors (20 points)

Let the weight w(x) of an n× 1 column vector x be the number of nonzero
elements of x. Call an n× n matrix A near-diagonal if it has at most one
nonzero off-diagonal element; i.e., if there is at most one pair of indices i, j
such that i 6= j and Aij 6= 0.

Given n, what is the smallest value k such that there exists an n × 1
column vector x with w(x) = 1 and a sequence of k n × n near-diagonal
matrices A1, A2, . . . Ak such that w(A1A2 · · ·Akx) = n?

Solution

Let’s look at the effect of multiplying a vector of known weight by just one
near-diagonal matrix. We will show: (a) for any near-diagonal A and any x,
w(Ax) ≤ w(x) + 1, and (b) for any n×1 column vector x with 0 < w(x) < n,
there exists a near-diagonal matrix A with w(Ax) ≥ w(x) + 1.

To prove (a), observe that (Ax)i =
∑n
j=1Aijxj . For (Ax)i to be nonzero,

there must be some index j such that Aijxj is nonzero. This can occur in
two ways: j = i, and Aii and xi are both nonzero, or j 6= i, and Aij and xj
are both nonzero. The first case can occur for at most w(x) different values

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 382

of i (because there are only w(x) nonzero entries xi). The second can occur
for at most one value of i (because there is at most one nonzero entry Aij
with i 6= j). It follows that Ax has at most w(x) + 1 nonzero entries, i.e.,
that w(Ax) ≤ w(x) + 1.

To prove (b), choose k and m such that xk = 0 and xm 6= 0, and let A
be the matrix with Aii = 1 for all i, Akm = 1, and all other entries equal to
zero. Now consider (Ax)i. If i 6= k, then (Ax)i =

∑n
j=1Aijxj = Aiixi = xi.

If i = k, then (Ai)k =
∑n
j=1Aijxj = Akkxk + Akmxm = xm 6= 0, since we

chose k so that ak = 0 and chose m so that am 6= 0. So (Ax)i is nonzero if
either xi is nonzero or i = k, giving w(Ax) ≥ w(x) + 1.

Now proceed by induction:
For any k, if A1 . . . Ak are near-diagonal matrices, then w(A1 · · ·Akx) ≤

w(x)+k. Proof: The base case of k = 0 is trivial. For larger k, w(A1 · · ·Akx) =
w(A1(A2 · · ·Akx)) ≤ w(A2 · · ·Akx) + 1 ≤ w(x) + (k − 1) + 1 = w(x) + k.

Fix x with w(x) = 1. Then for any k < n, there exists a sequence of near-
diagonal matrices A1 . . . Ak such that w(A1 · · ·Akx) = k + 1. Proof: Again
the base case of k = 0 is trivial. For larger k < n, we have from the induction
hypothesis that there exists a sequence of k − 1 near-diagonal matrices
A2 . . . Ak such that w(A2 . . . Akx) = k < n. From claim (b) above we then
get that there exists a near-diagonal matrix A1 such that w(A1(A2 . . . Akx)) =
w(A2 . . . Akx) + 1 = k + 1.

Applying both these facts, setting k = n− 1 is necessary and sufficient
for w(A1 . . . Akx) = n, and so k = n− 1 is the smallest value of k for which
this works.

F.3.4 A dialectical problem (20 points)

Let S be a set with n elements. Recall that a relation R is symmetric if xRy
implies yRx, antisymmetric if xRy and yRx implies x = y, reflexive if xRx
for all x, and irreflexive if ¬(xRx) for all x.

1. How many relations on S are symmetric, antisymmetric, and reflexive?

2. How many relations on S are symmetric, antisymmetric, and irreflexive?

3. How many relations on S are symmetric and antisymmetric?

Solution

Since in all three cases we are considering symmetric antisymmetric relations,
we observe first that if R is such a relation, then xRy implies yRx which in
turn implies x = y. So any such R can have xRy only if x = y.

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 383

1. Let R be symmetric, antisymmetric, and reflexive. We have already
established that xRy implies x = y. Reflexivity says x = y implies
xRy, so we have xRy iff x = y. Since this fully determines R, there is
exactly 1 such relation.

2. Now let R be symmetric, antisymmetric, and irreflexive. For x 6= y
we have ¬(xRy) (from symmetry+antisymmetry); but for x = y, we
again have ¬(xRy) (from irreflexivivity). So R is the empty relation,
and again there is exactly 1 such relation.

3. Now for each x there is no constraint on whether xRx holds or not,
but we still have ¬(xRy) for x 6= y. Since we can choose whether xRx
holds independently for each x, we have n binary choices giving 2n
possible relations.

F.3.5 A predictable pseudorandom generator (20 points)

Suppose you are given a pseudorandom number generator that generates a
sequence of values x0, x1, x2, . . . by the rule xi+1 = (axi + b) mod p, where
p is a prime and a, b, and x0 are arbitrary integers in the range 0 . . . p− 1.
Suppose further that you know the value of p but that a, b, and x0 are secret.

1. Prove that given any three consecutive values xi, xi+1, xi+2, it is possible
to compute both a and b, provided xi 6= xi+1.

2. Prove that given only two consecutive values xi and xi+1, it is impossible
to determine a.

Solution

1. We have two equations in two unknowns:

axi + b = xi+1 (mod p)
axi+1 + b = xi+2 (mod p).

Subtracting the second from the first gives

a(xi − xi+1) = xi+1 − xi+2 (mod p).

If xi 6= xi+1, then we can multiply both sides by (xi − xi+1)−1 to get

a = (xi+1 − xi+2)(xi − xi+1)−1 (mod p).

Now we have a. To find b, plug our value for a into either equation
and solve for b.

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 384

2. We will show that for any observed values of xi and xi+1, there are at
least two different values for a that are consistent with our observation;
in fact, we’ll show the even stronger fact that for any value of a, xi
and xi+1 are consistent with that choice of a. Proof: Fix a, and let
b = xi+1 − axi (mod p). Then xi+1 = axi + b (mod p).

F.3.6 At the robot factory (20 points)

Each robot built by Rossum’s Combinatorial Robots consists of a head and
a body, each weighing a non-negative integer number of units. If there are
exactly 3n different ways to build a robot with total weight n, and exactly 2n
different bodies with weight n, exactly how many different heads are there
with weight n?

Solution

This is a job for generating functions!
Let R =

∑
3nzn = 1

1−3z be the generating function for the number of
robots of each weight, and let B =

∑
2nzn = 1

1−2z be the generating function
for the number of bodies of each weight. Let H =

∑
hnz

n be the generating
function for the number of heads. Then we have R = BH, or

H = R

B
= 1− 2z

1− 3z = 1
1− 3z −

2z
1− 3z .

So h0 = 30 = 1, and for n > 0, we have hn = 3n−2 ·3n−1 = (3−2)3n−1 =
3n−1.

F.4 CS202 Final Exam, December 19th, 2008
Write your answers in the blue book(s). Justify your answers. Work alone.
Do not use any notes or books.

There are five problems on this exam, each worth 20 points, for a total
of 100 points. You have approximately three hours to complete this exam.

F.4.1 Some logical sets (20 points)

Let A, B, and C be sets.
Prove or disprove: If, for all x, x ∈ A → (x ∈ B → x ∈ C), then

A ∩B ⊆ C.

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 385

Solution

Proof: Rewrite x ∈ A → (x ∈ B → x ∈ C) as x 6∈ A ∨ (x 6∈ B ∨ x ∈ C) or
(x 6∈ A ∨ x 6∈ B) ∨ x ∈ C. Applying De Morgan’s law we can convert the
first OR into an AND to get ¬(x ∈ A ∧ x ∈ B) ∨ x ∈ C. This can further be
rewritten as (x ∈ A ∧ x ∈ B)→ x ∈ C.

Now suppose that this expression is true for all x and consider some x in
A ∩B. Then x ∈ A ∧ x ∈ B is true. It follows that x ∈ C is also true. Since
this holds for every element x of A ∩B, we have A ∩B ⊆ C.

F.4.2 Modularity (20 points)

Let m be an integer greater than or equal to 2. For each a in Zm, let
fa : Zm → Zm be the function defined by the rule fa(x) = ax.

Show that fa is a bijection if and only if gcd(a,m) = 1.

Solution

From the extended Euclidean algorithm we have that if gcd(a,m) = 1, then
there exists a multiplicative inverse a−1 such that a−1ax = x (mod m) for
all x in Zm. It follows that fa has an inverse function f−1

a , and is thus a
bijection.

Alternatively, suppose gcd(a,m) = g 6= 1. Then fa(m/g) = am/g =
m(a/g) = 0 = a · 0 = fa(0) (mod m) but m/g 6= 0 (mod m) since 0 <
m/g < m. It follows that fa is not injective and thus not a bijection.

F.4.3 Coin flipping (20 points)

Take a biased coin that comes up heads with probability p and flip it 2n
times.

What is the probability that at some time during this experiment two
consecutive coin-flips come up both heads or both tails?

Solution

It’s easier to calculate the probability of the event that we never get two
consecutive heads or tails, since in this case there are only two possible
patterns of coin-flips: HTHT . . . or THTH Since each of these patterns
contains exactly n heads and n tails, they occur with probability pn(1− p)n,
giving a total probability of 2pn(1 − p)n. The probability that neither
sequence occurs is then 1− 2pn(1− p)n.

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 386

F.4.4 A transitive graph (20 points)

Let G be a graph with n vertices on which the adjacency relation is transitive:
whenever there is an edge uv and an edge vw, there is also an edge uw.
Suppose further that G is connected. How many edges does G have?

Solution

The graph G has exactly
(n

2
)
edges. The reason is that under the stated

conditions, G is a complete graph.
Consider any two vertices u and v. Because G is connected, there is a

path u = v0v1 . . . vk = v starting at u and ending at v. We can easily prove
by induction that there is an edge uvi for each 1 ≤ i ≤ k. The existence of
the first such edge is immediate from its presence in the path. For later edges,
we have from the induction hypothesis that there is an edge uvi, from the
path that there is an edge vivi+1, and thus from the transitivity condition
that there is and edge uvi+1. When i = k, we have that there is an edge uv.

F.4.5 A possible matrix identity (20 points)

Prove or disprove: If A and B are symmetric matrices of the same dimension,
then A2 −B2 = (A−B)(A+B).

Solution

Observe first that (A − B)(A + B) = A2 + AB − BA + B2. The question
then is whether AB = BA. Because A and B are symmetric, we have that
BA = B>A> = (AB)′. So if we can show that AB is also symmetric, then
we have AB = (AB)′ = BA. Alternatively, if we can find symmetric matrices
A and B such that AB is not symmetric, then A2 −B2 6= (A−B)(A+B).

Let’s try multiplying two generic symmetric 2-by-2 matrices:

(
a b
b c

)(
d e
e f

)
=
(
ad+ be ae+ bf
bd+ ce be+ cf

)

The product doesn’t look very symmetric, and in fact we can assign
variables to make it not so. We need ae+ bf 6= bd+ ce. Let’s set b = 0 to
make the bf and bd terms drop out, and e = 1 to leave just a and c. Setting
a = 0 and c = 1 gives an asymmetric product. Note that we didn’t determine
d or f , so let’s just set them to zero as well to make things as simple as
possible. The result is:

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 387

AB =
(

0 0
0 1

)(
0 1
1 0

)
=
(

0 0
1 0

)

Which is clearly not symmetric. So for these particular matrices we have
A2 −B2 6= (A−B)(A+B), disproving the claim.

F.5 CS202 Final Exam, December 14th, 2010
Write your answers in the blue book(s). Justify your answers. Give closed-
form solutions when possible. Work alone. Do not use any notes or books.

There are five problems on this exam, each worth 20 points, for a total
of 100 points. You have approximately three hours to complete this exam.

F.5.1 Backwards and forwards (20 points)

Let {0, 1}n be the set of all binary strings x1x2 . . . xn of length n.
For any string x in {0, 1}n, let r(x) = xnxn−1 . . . x1 be the reversal of x.

Let x ∼ y if x = y or x = r(y).
Given a string x in {0, 1}n and a permutation π of {1, . . . , n}, let π(x)

be the string xπ(1), xπ(2), . . . , xπ(n). Let x ≈ y if there exists some π such
that x = π(y).

Both ∼ and ≈ are equivalence relations. Let {0, 1}n/∼ and {0, 1}n/≈
be the corresponding sets of equivalence classes.

1. What is |{0, 1}n/∼| as a function of n?

2. What is |{0, 1}n/≈| as a function of n?

Solution

1. Given a string x, the equivalence class [x] = {x, r(x)} has either one
element (if x = r(x)) or two elements (if x 6= r(x)). Let m1 be the
number of one-element classes and m2 the number of two-element
classes. Then |{0, 1}n| = 2n = m1 + 2m2 and the number we are
looking for is m1 + m2 = 2m1+2m2

2 = 2n+m1
2 = 2n−1 + m1

2 . To find
m1, we must count the number of strings x1, . . . xn with x1 = xn,
x2 = xn−1, etc. If n is even, there are exactly 2n/2 such strings, since
we can specify one by giving the first n/2 bits (which determine the
rest uniquely). If n is odd, there are exactly 2(n+1)/2 such strings, since

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 388

the middle bit can be set freely. We can write both alternatives as
m1 = 2dn/2e, giving |{0, 1}n/∼| = 2n−1 + 2dn/2e−1.

2. In this case, observe that x ≈ y if and only if x and y contain the same
number of 1 bits. There are n+ 1 different possible values 0, 1, . . . , n
for this number. So |{0, 1}n/≈| = n+ 1.

F.5.2 Linear transformations (20 points)

Show whether each of the following functions from R2 to R is a linear
transformation or not.

f1(x) = x1 − x2.

f2(x) = x1x2.

f3(x) = x1 + x2 + 1.

f4(x) = x2
1 − x2

2 + x1 − x2
x1 + x2 + 1 .

Clarification added during the exam: You may assume that x1 +x2 6=
−1 for f4.

Solution

1. Linear: f1(ax) = ax1 − ax2 = a(x1 − x2) = af1(x) and f1(x + y) =
(x1 + y1)− (x2 + y2) = (x1 − x2) + (y1 − y2) = f1(x) + f1(y).

2. Not linear: f2(2x) = (2x1)(2x2) = 4x1x2 = 4f2(x) 6= 2f2(x) when
f2(x) 6= 0.

3. Not linear: f3(2x) = 2x1 + 2x1 + 1 but 2f3(x) = 2x1 + 2x2 + 2. These
are never equal.

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 389

4. Linear:

f4(x) = x2
1 − x2

2 + x1 − x2
x1 + x2 + 1

= (x1 + x2)(x1 − x2) + (x1 − x2)
x1 + x2 + 1

= (x1 + x2 + 1)(x1 − x2)
x1 + x2 + 1

= x1 − x2

= f1(x).

Since we’ve already shown f1 is linear, f4 = f1 is also linear.
A better answer is that f4 is not a linear transformation from R2 to

R because it’s not defined when x1 + x2 − 1 = 0. The clarification added
during the exam tries to work around this, but doesn’t really work. A
better clarification would have defined f4 as above for most x, but have
f4(x) = x1 − x2 when x1 + x2 = −1. Since I was being foolish about this
myself, I gave full credit for any solution that either did the division or
noticed the dividing-by-zero issue.

F.5.3 Flipping coins (20 points)

Flip n independent fair coins, and let X be a random variable that counts
how many of the coins come up heads. Let a be a constant. What is E[aX]?

Solution

To compute E[aX], we need to sum over all possible values of aX weighted
by their probabilities. The variable X itself takes on each value k ∈ {0 . . . n}
with probability

(n
k

)
2−n, so aX takes on each corresponding value ak with

the same probability. We thus have:

E[aX] =
n∑
k=0

ak
(
n

k

)
2−n

= 2−n
n∑
k=0

(
n

k

)
ak1n−k

= 2−n(a+ 1)n

=
(
a+ 1

2

)n
.

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 390

The second to last step uses the Binomial Theorem.
As a quick check, some easy cases are a = 0 with E[aX] = (1/2)n,

which is consistent with the fact that aX = 1 if and only if X = 0; and
a = 1 with E[aX] = 1n = 1, which is consistent with aX = 1X = 1 being
constant. Another easy case is n = 1, in which we can compute directly
E[aX] = (1/2)a0 + (1/2)a1 = a+1

2 as given by the formula. So we can have
some confidence that we didn’t mess up in the algebra somewhere.

Note also that E[aX] =
(
a+1

2

)n
is generally not the same as aE[X] = an/2.

F.5.4 Subtracting dice (20 points)

Let X and Y represent independent 6-sided dice, and let Z = |X − Y | be
their difference. (For example, if X = 4 and Y = 3, then Z = 1, and similarly
when X = 2 and Y = 5, then Z = 3.)

1. What is Pr[Z = 1]?

2. What is E[Z]?

3. What is E[Z|Z 6= 0]?

Solution

1. There are five cases where Z = 1 with Y = X + 1 (because X can
range from 1 to 5), and five more cases where Z = 1 with X = Y + 1.
So Pr[Z = 1] = 10

36 = 5
18 .

2. Here we count 10 cases where Z = 1, 8 cases where Z = 2 (using
essentially the same argument as above; here the lower die can range
up to 4), 6 where Z = 3, 4 where Z = 4, and 2 where Z = 5.
The cases where Z = 0 we don’t care about. Summing up, we get
E[Z] = (10 · 1 + 8 · 2 + 6 · 3 + 4 · 4 + 2 · 5)/36 = 70/36 = 35/18.

3. We can avoid recomputing all the cases by observing that E[Z] =
E[Z|Z 6= 0] Pr[Z 6= 0] + E[Z|Z = 0] Pr[Z = 0]. Since E[Z|Z = 0] =
0, the second term disappears and we can solve for E[Z|Z 6= 0] =
E[Z]/Pr[Z 6= 0]. We can easily calculate Pr[Z = 0] = 1/6 (since both
dice are equal in this case, giving 6 out of 36 possible rolls), from
which we get Pr[Z 6= 0] = 1− Pr[Z = 0] = 5/6. Plugging this into our
previous formula gives E[Z|Z 6= 0] = (35/18)

(5/6) = 7/3.

It is also possible (and acceptable) to solve this problem by building a
table of all 36 cases and summing up the appropriate values.

APPENDIX F. FINAL EXAMS FROM EARLIER SEMESTERS 391

F.5.5 Scanning an array (20 points)

Suppose you have an m×m array in some programming language, that is, an
data structure A holding a value A[i, j] for each 0 ≤ i < m and 0 ≤ j < m.
You’d like to write a program that sets every element of the array to zero.

The usual way to do this is to start with i = 0 and j = 0, increment j
until it reaches m, then start over with i = 1 and j = 0, and repeat until all
m2 elements of A have been reached. But this requires two counters. Instead,
a clever programmer suggests using one counter k that runs from 0 up to
m2 − 1, and at each iteration setting A[3k mod m, 7k mod m] to zero.

For what values of m > 0 does this approach actually reach all m2

locations in the array?

Solution

Any two inputs k that are equal modm give the same pair (3k mod m, 7k mod
m). So no matter how many iterations we do, we only reach m distinct
locations. This equals m2 only if m = 1 or m = 0. The problem statement
excludes m = 0, so we are left with m = 1 as the only value of m for which
this method works.

Appendix G

How to write mathematics

Suppose you want to write down some mathematics. How do you do it?

G.1 By hand
This method is no longer recommended for CPSC 202 assignments.

Advantages Don’t need to learn any special formatting tools: any symbol
you can see you can copy. Very hard to make typographical errors.

Disadvantages Not so good for publishing. Results may be ugly if you have
bad handwriting. Results may be even worse if you copy somebody
else’s bad handwriting. Requires a scanner or camera to turn into
PDF.

Example

G.2 LATEX
This is what these notes are written in. It’s also standard for writing papers
in most technical fields.

Advantages Very nice formatting. De facto standard for mathematics
publishing. Free. Trivial to convert to PDF.

392

APPENDIX G. HOW TO WRITE MATHEMATICS 393

Disadvantages You have to install it and learn it. Can’t tell what some-
thing looks like until you run it through a program. Cryptic and
uninformative 1970’s-era error messages. The underlying system TEX
is possibly the worst programming language in widespread use.

Example
n∑
i=1

i = n(n+ 1)
2 .

The text above was generated by this source code:

\begin{displaymath}
\sum_{i=1}^n i = \frac{n(n+1)}{2}.

\end{displaymath}

although a real LATEX document would also include some boilerplate
around it.

LATEX runs on the computers in the Zoo, and can be made to run on
just about anything. There is a pretty good introductions to LATEX at
https://en.wikibooks.org/wiki/LaTeX.

The general rule of thumb for typesetting mathematics in LATEX is that
everything is represented in ASCII, with math typically delimited by dollar
signs, special symbols represented by operators preceded by backslashes, and
argument grouped using curly braces. The \begin and \end operators are
used for larger structures, much like opening and closing tags in HTML. An
example of a complete LATEX document that uses a few of the fancier features
is given in Figure G.1. The formatted version appears in Figure G.2.

There are front-ends to LATEX like Lyx http://www.lyx.org that try to
make it WYSIWYG, with varying results. I don’t use any of them myself.

G.3 Microsoft Word equation editor
This is probably a bad habit to get into.

Advantages There’s a good chance you already type things up in Word.

Disadvantages Ugly formatting. Unpopular with conferences and journals,
if you end up in the paper-writing business.

I don’t use Word much, so no example.

https://en.wikibooks.org/wiki/LaTeX
http://www.lyx.org

APPENDIX G. HOW TO WRITE MATHEMATICS 394

\documentclass[12pt]{article}

% what kind of programming language doesn’t let you
% put in comments and define new commands?
\newcommand{\twoTimes}[1]{2 \cdot {#1}}

% sometimes it is useful to import packages
\usepackage{amsmath}
\usepackage{fullpage}

\begin{document}

\section{Introduction}

This is a document written in \LaTeX{}.

Each paragraph starts with a new line.

\section{Contents}
\label{section-contents}

It is well known that
the \textbf{inverse Ackermann function} $\alpha(n)$ is $O(\log n)$
and that $O(n \log n)$ is $O(n^{1+\epsilon})$ for any $\epsilon > 0$.

\begin{equation}
\twoTimes{4} = 8
\label{eq-two-times}

\end{equation}

I am sure \eqref{eq-two-times} is true, but this is \emph{not} a proof.

\section{Conclusion}

Look at all the great stuff we said in \S\ref{section-contents}!
\end{document}

Figure G.1: Source code for sample LATEX document.

APPENDIX G. HOW TO WRITE MATHEMATICS 395

1 Introduction

This is a document written in LATEX.
Each paragraph starts with a new line.

2 Contents

It is well known that the inverse Ackermann function α(n) is O(log n) and that O(n log n)
is O(n1+ε) for any ε > 0.

2 · 4 = 8 (1)

I am sure (1) is true, but this is not a proof.

3 Conclusion

Look at all the great stuff we said in §2!

1

Figure G.2: Formatted sample LATEX document.

APPENDIX G. HOW TO WRITE MATHEMATICS 396

G.4 Google Docs equation editor
Pretty similar to the equation editor in Microsoft Word.

Advantages Accessible for free from anywhere on the web. Easy export to
PDF.

Disadvantages Formatting not much better than Microsoft Word.

G.5 ASCII and/or Unicode art
This is the method originally used to format these notes, back when they lived
at http://pine.cs.yale.edu/pinewiki/CS202. I also use it for putting
equations in my own personal research notes, which are otherwise stored in
flat ASCII files.

Advantages Everybody can read ASCII and most people can read Unicode.
No special formatting required. Results are mostly machine-readable.

Disadvantages Very ugly formatting. Writing Unicode on a computer is a
bit like writing Chinese—you need to learn how to input each possible
character using whatever system you’ve got. May render strangely on
some browsers. No easy way to convert to other formats like LATEX or
PDF.

Example sum[i=1 to n] i = n(n+1)/2 (ASCII). Or a fancy version:

n

\ n(n+1)
/ i = ------
--- 2
i=1

Amazingly enough, many mathematics papers from the typewriter era
(pre-1980 or thereabouts) were written like this, often with the more obscure
symbols inked in by hand. Fortunately (for readers at least), we don’t have
to do this any more.

http://pine.cs.yale.edu/pinewiki/CS202

APPENDIX G. HOW TO WRITE MATHEMATICS 397

G.6 Markdown
A compromise between ASCII and formatting languages like LATEX.

Advantages Looks more like normal text than LATEX. Many tools exist for
converting to other formats. Used by many web platforms.

Disadvantages No special notation for mathematics (though some tools
like pandoc allow embedded LATEX). Many variant syntaxes.

Example

* This is an itemized list with a *lot* of **shouting**.
* It uses the formatting conventions expected by [‘pandoc‘](http://pandoc.org).
* It even includes an embedded LaTeX formula: $x^2+y^2=z^2$.

Formatted version of example

• This is an itemized list with a lot of shouting.
• It uses the formatting conventions expected by pandoc.
• It even includes an embedded LaTeX formula: x2 + y2 = z2.

http://pandoc.org
http://pandoc.org

Appendix H

Tools from calculus

Calculus is not a prerequisite for this course, and it is possible to have a
perfectly happy career as a computer scientist without learning any calculus
at all. But for some tasks, calculus is much too useful a tool to ignore.
Fortunately, even though typical high-school calculus courses run a full
academic year, the good parts can be understood with a few hours of
practice.

H.1 Limits
The fundamental tool used in calculus is the idea of a limit. This is an
approximation by nearby values to the value of an expression that we can’t
calculate exactly, typically because it involves division by zero.

The formal definition is that the limit as x goes to a of f(x) is c, written

lim
x→a

f(x) = c,

if for any constant ε > 0 there exists a constant δ > 0 such that

|f(y)− c| ≤ ε

whenever

|y − x| ≤ δ.

The intuition is that as y gets closer to x, f(y) gets closer to c.
The formal definition has three layers of quantifiers, so as with all quan-

tified expressions it helps to think of it as a game played between you and
some adversary that controls all the universal quantifiers. So to show that
limx→a = c, we have three steps:

398

APPENDIX H. TOOLS FROM CALCULUS 399

• Some malevolent jackass picks ε, and says “oh yeah, smart guy, I bet
you can’t force f(y) to be within ε of c.”

• After looking at ε, you respond with δ, limiting the possible values of
y to the range [x− δ, x+ δ].

• Your opponent wins if he can find a nonzero y in this range with f(y)
outside [c− ε, c+ ε]. Otherwise you win.

For example, in the next section we will want to show that

lim
z→0

(x+ z)2 − x2

z
= 2x.

We need to take a limit here because the left-hand side isn’t defined when
z = 0.

Before playing the game, it helps to use algebra to rewrite the left-hand
side a bit:

lim
z→0

(x+ z)2 − x2

z
= lim

z→0

x2 + 2x(z) + (z)2 − x2

z

= lim
z→0

2x(z) + (z)2

z

= lim
z→0

2x+ z.

So now the adversary says “make |(2x+ z)− 2x| < ε,” and we say “that’s
easy, let δ = ε, then no matter what z you pick, as long as |z − 0| < δ, we
get |(2x+ z)− 2x| = |z| < δ = ε, QED.” And the adversary slinks off with
its tail between its legs to plot some terrible future revenge.

Of course, a definition only really makes sense if it doesn’t work if we
pick a different limit. If we try to show

lim
z→0

(x+ z)2 − x2

z
= 12,

(assuming x 6= 6), then the adversary picks ε < |12− 2x|. Now we are out
of luck: no matter what δ we pick, the adversary can respond with some
value very close to 0 (say, min(δ/2, |12− 2x|/2)), and we land inside ±δ but
outside 12± ε.

We can also take the limit as a variable goes to infinity. This has a
slightly different definition:

lim
x→∞

f(x) = c

APPENDIX H. TOOLS FROM CALCULUS 400

holds if for any ε > 0, there exists an N > 0, such that for all x > N ,
|f(x)− c| < ε. Structurally, this is the same 3-step game as before, except
now after we see ε, instead of making x very close to a, we make x very big.
Limits as x goes to infinity are sometimes handy for evaluating asymptotic
notation.

Limits don’t always exist. For example, if we try to take

lim
x→∞

x2,

then there is no value c that x2 eventually approaches. In this particular
case, we can say that limx→∞ x

2 diverges to infinity, which means that
for any m, there is an N such that f(x) > m for all x > N .

Other limits may not diverge to infinity but still may not exist. An
example would be

lim
n→∞

(−1)n.

Since this oscillates between −1 and +1 at integer values of n (and does
horrible things in the complex plane at other values), there is no particular
value c that it ever approaches.

H.2 Derivatives
The derivative or differential of a function measures how much the function
changes if we make a very small change to its input. One way to think about
this is that for most functions, if you blow up a plot of them enough, you don’t
see any curvature any more, and the function looks like a line that we can
approximate as ax+ b for some coefficients a and b, and the derivative gives
the slope a. This is useful for determining whether a function is increasing
or decreasing in some interval, and for finding things like local minima or
maxima.

The derivative f ′(x) gives the coefficient a for each particular x. The
notation f ′ is due to Leibnitz and is convenient for functions that have names
but not so convenient for something like x2 + 3. For more general functions,
a different notation due to Newton is used. The derivative of f with respect
to x is written as df

dx or d
dxf , and its value for a particular value x = c is

written using the somewhat horrendous notation

d

dx
f

∣∣∣∣
x=c

.

APPENDIX H. TOOLS FROM CALCULUS 401

f(x) f ′(x)
c 0
xn nxn−1

ex ex

ax ax ln a follows from ax = ex ln a

ln x 1/x
cg(x) cg′(x) multiplication by a constant

g(x) + h(x) g′(x) + h′(x) sum rule
g(x)h(x) g(x)h′(x) + g′(x)h(x) product rule
g(h(x)) g′(h(x))h′(x) chain rule

Table H.1: Table of derivatives

There is a formal definitions of f ′(x), which nobody ever uses, given by

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)
∆x ,

where ∆x is a single two-letter variable (not the product of ∆ and x!) that
represents the change in x. In the preceding section, we calculated an example
of this kind of limit and showed that d

dxx
2 = 2x.

Using the formal definition to calculate derivatives is painful and almost
always unnecessary. The reason is that the derivatives for most standard
functions are well-known, and by memorizing a few simple rules you can
combine these to compute the derivative of just about anything completely
mechanically. A handy cheat sheet is given in Table H.1

Example:

d

dx

x2

ln x = x2(d
dx

1
ln x) + 1

ln x ·
d

dx
x2[product rule]

= x2 · −1 · (ln x)−2 · d
dx

ln x[chain rule] + 1
ln x · 2x

= − x2

ln2 x
· 1
x

+ 2x
ln x

= −x
ln2 x

+ 2x
ln x.

The idea is that whatever the outermost operation in an expression is,
you can apply one of the rules above to move the differential inside it, until
there is nothing left. Even computers can be programmed to do this. You
can do it too.

APPENDIX H. TOOLS FROM CALCULUS 402

H.3 Integrals
First you have to know how to find derivatives (see previous section). Having
learned how to find derivatives, your goal in integrating some function f(x)
is to find another function F (x) such that F ′(x) = f(x). You can then write
that the indefinite integral

∫
f(x) dx of f(x) is F (x) + C (any constant

C works), and compute definite integrals with the rule∫ b

a
f(x) dx = F (b)− F (a).

Though we’ve mostly described integrals as anti-derivatives, there is a
physical interpretation:

∫ b
a f(x) dx gives the area of the region under the f(x)

curve between a and b (with negative values contributing negative area). In
this view, an integral acts very much like a sum, and indeed the integral of
many well-behaved functions1 can be computed using the formula∫ b

a
f(x) dx = lim

∆x→0

∑
i=0
bb− a∆x cf(a+ i∆x)∆x. (H.3.1)

Alternatively, one can also think of the definite integral
∫ b
a f(x) dx as a

special case of the indefinite integral
∫
f(x) dx = F (x) + C where we choose

C = −F (a) so that F (a) + C = 0. In this case, F (b) + C = F (b)− F (a) =∫ b
a f(x) dx. Where this interpretation differs from “area under the curve” is
that it works even if b < a.

Returning to anti-differentiation, how do you find a magic F (x) with
F ′(x) = f(x)? Some possibilities:

• Memorize some standard integral formulas. Some useful ones are given
in Table H.2.

• Guess but verify. Guess F (x) and compute F ′(x) to see if it’s f(x).
May be time-consuming unless you are good at guessing, and can
put enough parameters in F (x) to let you adjust F ′(x) to equal f(x).
Example: if f(x) = 2/x, you may remember the 1/x formula and

1One way to be a well-behaved function is to have a bounded derivative over [a, b]. This
will make (H.3.1) work, in the sense of giving sensible results that are consistent with more
rigorous definitions of integrals.
An example of a non-well-behaved function is the non-differentiable function f with

f(x) = 1 if x is rational and f(x) = 0 if x is irrational. This is almost never 1, but (H.3.1)
may give strange results when ∆x is chosen so that f(a+ i∆x hits a lot of rationals. More
sophisticated definitions of integrals, like the Lebesgue integral, give more reasonable
answers here.

APPENDIX H. TOOLS FROM CALCULUS 403

f(x) F (x)
f(x) + g(x) F (x) +G(x)
af(x) aF (x) a is constant
f(ax) F (ax)

a a is constant
xn xn+1

n+1 n constant, n 6= 1
x−1 ln x
ex ex

ax ax

ln a a constant
ln x x ln x− x

Table H.2: Table of integrals

try F (x) = a ln bx. Then F ′(x) = ab/(bx) = a/x and you can set
a = 2, quietly forget you ever put in b, and astound your friends (who
also forgot the af(x) rule) by announcing that the integral is 2 ln x.
Sometimes if the answer comes out wrong you can see how to fudge
F (x) to make it work: if for f(x) = ln x you guess F (x) = x ln x, then
F ′(x) = ln x+ 1 and you can notice that you need to add a −x term
(the integral of −1) to get rid of the 1. This gives

∫
ln x dx = x ln x−x.

• There’s a technique called integration by parts, which is the integral
version of the duv = udv + vdu formula, but it doesn’t work as often
as one might like. The rule is that∫

u dv = uv −
∫
v du.

An example is
∫

ln x dx = x ln x−
∫
x d(ln x) = x ln x−

∫
x(1/x) dx =

x ln x−
∫

1 dx = x ln x−x. You probably shouldn’t bother memorizing
this unless you need to pass AP Calculus, although you can rederive it
from the product rule for derivatives.

• Use a computer algebra system like Mathematica, Maple, or Max-
ima. Mathematica’s integration routine is available on-line at http:
//integrals.wolfram.com.

• Look your function up in a big book of integrals. This is generally less
effective than using Mathematica, but may continue to work during
power failures.

Note that in each of these cases, once you’ve found one F with F ′(x) =
f(x), then any function of the form F (x) + C (where C is a constant) also

http://integrals.wolfram.com
http://integrals.wolfram.com

APPENDIX H. TOOLS FROM CALCULUS 404

works. One of the reasons for spending a year on high-school calculus is that
it takes that long to train you to remember to always write your integrals
as F (x) + C. Fortunately, as soon as one calculates a definite integral∫ b
a f(x) dx = (F (b) + C)− (F (a) + C), the C’s cancel, so usually forgetting
the constant will not cause too much trouble.

Appendix I

The natural numbers

Here we give an example of how we can encode simple mathematics using
predicate logic, and then prove theorems about the resulting structure. Our
goal is to represent the natural numbers: 0, 1, 2, etc.1

I.1 The Peano axioms
The Peano axioms represent natural numbers using a special 0 constant
and a function symbol S (for “successor”; think of it as +1). Repeatedly
applying S to 0 generates increasingly large natural numbers: S0 = 1, SS0 =
2, SSS0 = 3, etc. (Note that 1, 2, 3, etc., are not part of the language,
although we might use them sometimes as shorthand for long strings of
S’s.) For convenience, we don’t bother writing parentheses for the function
applications unless we need to do so to avoid ambiguity: read SSSS0 as
S(S(S(S(0)))).

The usual interpretation of function symbols implies that 0 and its
successors exist, but it doesn’t guarantee that they aren’t all equal to each
other. The first Peano axiom2 prevents this:

∀x : Sx 6= 0. (P1)
1Some people define the natural numbers as starting at 1. Those people are generally

(a) wrong, (b) number theorists, (c) extremely conservative, or (d) citizens of the United
Kingdom of Great Britain and Northern Ireland. As computer scientists, we will count
from 0 as the gods intended.

2This is not actually the first axiom that Peano defined. The original Peano ax-
ioms [Pea89, §1] included some axioms on existence of Sx and the properties of equality
that have since been absorbed as standard rules of first-order logic. The axioms we are
presenting here correspond to Peano’s axioms 8, 7, and 9.

405

APPENDIX I. THE NATURAL NUMBERS 406

In English, 0 is not the successor of any number.
This still allows for any number of nasty little models in which 0 is

nobody’s successor, but we still stop before getting all of the naturals. For
example, let SS0 = S0; then we only have two elements in our model (0 and
S0, because once we get to S0, any further applications of S keep us where
we are.

To avoid this, we need to prevent S from looping back round to some
number we’ve already produced. It can’t get to 0 because of the first axiom,
and to prevent it from looping back to a later number, we take advantage of
the fact that they already have one successor:

∀x : ∀y : Sx = Sy → x = y. (P2)

If we take the contrapositive in the middle, we get x 6= y → Sx 6= Sy. In
other words, we can’t have a single number z that is the successor of two
different numbers x and y.

Now we get all of N, but we may get some extra elements as well. There
is nothing in the first two axioms that prevents us from having something
like this:

0→ S0→ SS0→ SSS0→ . . . B → SB → SSB → SSSB → . . .

where B stands for “bogus.”
The hard part of coming up with the Peano axioms was to prevent the

model from sneaking in extra bogus values (that still have successors and
at most one predecessor each). This is (almost) done using the third Peano
axiom, which in first-order logic—where we can’t write ∀P—is written as
an axiom schema. This is a pattern that generates an infinite list of an
axioms, one for each choice of predicate P :

(P (0) ∧ (∀x : P (x)→ P (Sx)))→ ∀x : P (x). (P3)

This is known as the induction schema, and says that, for any predicate
P , if we can prove that P holds for 0, and we can prove that P (x) implies
P (x + 1), then P holds for all x in N. The intuition is that even though
we haven’t bothered to write out a proof of, say P (1337), we know that we
can generate one by starting with P (0) and modus-pwning our way out to
P (1337) using P (0) → P (1), then P (1) → P (2), then P (2) → P (3), etc.
Since this works for any number (eventually), there can’t be some number
that we missed.

In particular, this lets us throw out the bogus numbers in the bad example
above. Let B(x) be true if x is bogus (i.e., it’s equal to B or one of the other

APPENDIX I. THE NATURAL NUMBERS 407

values in its chain of successors). Let P (x) ≡ ¬B(x). Then P (0) holds (0 is
not bogus), and if P (x) holds (x is not bogus) then so does P (Sx). It follows
from the induction axiom that ∀xP (x): there are no bogus numbers.3

I.2 A simple proof
Let’s use the Peano axioms to prove something that we know to be true about
the natural numbers we learned about in grade school but that might not be
obvious from the axioms themselves. (This will give us some confidence that
the axioms are not bogus.) We want to show that 0 is the only number that
is not a successor:

Claim I.2.1. ∀x : (x 6= 0)→ (∃y : x = Sy).

To find a proof of this, we start by looking at the structure of what we are
trying to prove. It’s a universal statement about elements of N (implicitly,
the ∀x is really ∀x ∈ N, since our axioms exclude anything that isn’t in N),
so our table of proof techniques suggests using an induction argument, which
in this case means finding some predicate we can plug into the induction
schema.

If we strip off the ∀x, we are left with

(x 6= 0)→ (∃y : x = Sy).

Here a direct proof is suggested: assuming x 6= 0, and try to prove
∃y : x = Sy. But our axioms don’t tell us much about numbers that aren’t
0, so it’s not clear what to do with the assumption. This turns out to be a
dead end.

Recalling that A→ B is the same thing as ¬A ∨B, we can rewrite our
goal as

x = 0 ∨ ∃y : x = Sy.

3There is a complication here. Peano’s original axioms were formulated in terms of
second-order logic, which allows quantification over all possible predicates (you can
write things like ∀P : P (x) → P (Sx)). So the bogus predicate we defined is implicitly
included in that for-all. But if there is no first-order predicate that distinguishes bogus
numbers from legitimate ones, the induction axiom won’t kick them out. This means
that the Peano axioms (in first-order logic) actually do allow bogus numbers to sneak in
somewhere around infinity. But they have to be very polite bogus numbers that never
do anything different from ordinary numbers. This is probably not a problem except for
philosophers. Similar problems show up for any model with infinitely many elements, due
to something called the Löwenheim-Skolem theorem.

APPENDIX I. THE NATURAL NUMBERS 408

This seems like a good candidate for P (our induction hypothesis), because
we do know a few things about 0. Let’s see what happens if we try plugging
this into the induction schema:

• P (0) ≡ 0 = 0 ∨ ∃y : 0 = Sy. The right-hand term looks false because
of our first axiom, but the left-hand term is just the reflexive axiom
for equality. P (0) is true.

• ∀xP (x)→ P (Sx). We can drop the ∀x if we fix an arbitrary x. Expand
the right-hand side P (Sx) ≡ Sx = 0 ∨ ∃ySx = Sy. We can be pretty
confident that Sx 6= 0 (it’s an axiom), so if this is true, we had better
show ∃ySx = Sy. The first thing to try for ∃ statements is instantiation:
pick a good value for y. Picking y = x works.

Since we showed P (0) and ∀xP (x)→ P (Sx), the induction schema tells
us ∀xP (x). This finishes the proof.

Having figured the proof out, we might go back and clean up any false
starts to produce a compact version. A typical mathematician might write
the preceding argument as:

Proof. By induction on x. For x = 0, the premise fails. For Sx, let y = x.

A really lazy mathematician would write:

Proof. Induction on x.

Though laziness is generally a virtue, you probably shouldn’t be quite
this lazy when writing up homework assignments.

I.3 Defining addition
Because of our restricted language, we do not yet have the ability to state
valuable facts like 1+1 = 2 (which we would have to write as S0+S0 = SS0).
Let’s fix this, by adding a two-argument function symbol + which we will
define using the axioms

• x+ 0 = x.

• x+ Sy = S(x+ y).

APPENDIX I. THE NATURAL NUMBERS 409

(We are omitting some ∀ quantifiers, since unbounded variables are
implicitly universally quantified.)

This definition is essentially a recursive program for computing x+y using
only successor, and there are some programming languages (e.g. Haskell)
that will allow you to define addition using almost exactly this notation. If
the definition works for all inputs to +, we say that + is well-defined. Not
working would include giving different answers depending on which parts
of the definitions we applied first, or giving no answer for some particular
inputs. These bad outcomes correspond to writing a buggy program. Though
we can in principle prove that this particular definition is well-defined (using
induction on y), we won’t bother. Instead, we will try to prove things about
our new concept of addition that will, among other things, tell us that the
definition gives the correct answers.

We start with a lemma, which is Greek for a result that is not especially
useful by itself but is handy for proving other results.4

Lemma I.3.1. 0 + x = x.

Proof. By induction on x. When x = 0, we have 0 + 0 = 0, which is true
from the first case of the definition. Now suppose 0 + x = x and consider
what happens with Sx. We want to show 0 + Sx = Sx. Rewrite 0 + Sx as
S(0 + x) [second case of the definition], and use the induction hypothesis to
show S(0 + x) = S(x).

(We could do a lot of QED-ish jumping around in the end zone there,
but it is more refined—and lazier—to leave off the end of the proof once it’s
clear we’ve satisifed all of our obligations.)

Here’s another lemma, which looks equally useless:

Lemma I.3.2. x+ Sy = Sx+ y.

Proof. By induction on y. If y = 0, then x+ S0 = S(x+ 0) = Sx = Sx+ 0.
Now suppose the result holds for y and show x+ SSy = Sx+ Sy. We have
x+ SSy = S(x+ Sy) = S(Sx+ y)[ind. hyp.] = Sx+ Sy.

Now we can prove a theorem: this is a result that we think of as useful
in its own right. (In programming terms, it’s something we export from a
module instead of hiding inside it as an internal procedure.)

Theorem I.3.3. x+ y = y + x. (Commutativity of addition.)
4It really means fork.

http://www.haskell.org

APPENDIX I. THE NATURAL NUMBERS 410

Proof. By induction on x. If x = 0, then 0 + y = y+ 0 (see previous lemma).
Now suppose x + y = y + x, and we want to show Sx + y = y + Sx. But
y+Sx = S(y+x)[axiom] = S(x+y)[induction hypothesis] = x+Sy[axiom] =
Sx+ y[lemma].

This sort of definition-lemma-lemma-theorem structure is typical of writ-
ten mathematical proofs. Breaking things down into small pieces (just like
breaking big subroutines into small subroutines) makes debugging easier,
since you can check if some intermediate lemma is true or false without
having to look through the entire argument at once.

Question: How do you know which lemmas to prove? Answer: As when
writing code, you start by trying to prove the main theorem, and whenever
you come across something you need and can’t prove immediately, you fork it
off as a lemma. Conclusion: The preceding notes were not originally written
in order.

I.3.1 Other useful properties of addition

So far we have shown that x + y = y + x, also known as commutativity
of addition. Another familiar property is associativity of addition:
x+ (y + z) = (x+ y) + z. This is easily proven by induction (try it!)

We don’t have subtraction in N (what’s 3− 5?)5 The closest we can get
is cancellation:

Lemma I.3.4. x+ y = x+ z → y = z.

We can define ≤ for N directly from addition: Let x ≤ y ≡ ∃zx+ z = y.
Then we can easily prove each of the following (possibly using our previous
results about addition having commutativity, associativity, and cancellation).

• 0 ≤ x.

• x ≤ Sx.

• x ≤ y ∧ y ≤ z → x ≤ z.

• a ≤ b ∧ c ≤ d→ a+ c ≤ b+ d.

5This actually came up on a subtraction test I got in the first grade from the terrifying
Mrs Garrison at Mountain Park Elementary School in Berkeley Heights, New Jersey. She
insisted that −2 was not the correct answer, and that we should have recognized it as a
trick question. She also made us black out the arrow the left of the zero on the number-line
stickers we had all been given to put on the top of our desks. Mrs Garrison was, on the
whole, a fine teacher, but she did not believe in New Math.

APPENDIX I. THE NATURAL NUMBERS 411

• x ≤ y ∧ y ≤ x→ x = y.

(The actual proofs will be left as an exercise for the reader.)

I.4 A scary induction proof involving even num-
bers

Let’s define the predicate Even(x) ≡ ∃yx = y+ y. (The use of ≡ here signals
that Even(x) is syntactic sugar, and we should think of any occurrence of
Even(x) as expanding to ∃yx = y + y.)

It’s pretty easy to see that 0 = 0+0 is even. Can we show that S0 is not
even?

Lemma I.4.1. ¬Even(S0).

Proof. Expand the claim as ¬∃yS0 = y + y ≡ ∀yS0 6= y + y. Since we are
working over N, it’s tempting to try to prove the ∀y bit using induction. But
it’s not clear why S0 6= y + y would tell us anything about S0 6= Sy + Sy.
So instead we do a case analysis, using our earlier observation that every
number is either 0 or Sz for some z.

Case 1 y = 0. Then S0 6= 0 + 0 since 0 + 0 = 0 (by the definition of +) and
0 6= S0 (by the first axiom).

Case 2 y = Sz. Then y+y = Sz+Sz = S(Sz+z) = S(z+Sz) = SS(z+z).6
Suppose S0 = SS(z+z) [Note: “Suppose” usually means we are starting
a proof by contradiction]. Then 0 = S(z + z) [second axiom], violating
∀x0 6= Sx [first axiom]. So S0 6= SS(z + z) = y + y.

Since we have S0 6= y + y in either case, it follows that S0 is not even.

Maybe we can generalize this lemma! If we recall the pattern of non-even
numbers we may have learned long ago, each of them (1, 3, 5, 7, . . .) happens
to be the successor of some even number (0, 2, 4, 6, . . .). So maybe it holds
that:

Theorem I.4.2. Even(x)→ ¬Even(Sx).

Proof. Expanding the definitions gives (∃yx = y + y) → (¬∃zSx = z + z).
This is an implication at top-level, which calls for a direct proof. The
assumption we make is ∃yx = y+ y. Let’s pick some particular y that makes

6What justifies that middle step?

APPENDIX I. THE NATURAL NUMBERS 412

this true (in fact, there is only one, but we don’t need this). Then we can
rewrite the right-hand side as ¬∃zS(y + y) = z + z. There doesn’t seem
to be any obvious way to show this (remember that we haven’t invented
subtraction or division yet, and we probably don’t want to).

We are rescued by showing the stronger statement ∀y¬∃zS(y+y) = z+z:
this is something we can prove by induction (on y, since that’s the variable
inside the non-disguised universal quantifier). Our previous lemma gives the
base case ¬∃zS(0 + 0) = z + z, so we just need to show that ¬∃zS(y + y) =
z + zimplies¬∃zS(Sy + Sy) = z + z. Suppose that S(Sy + Sy) = z + z for
some z [“suppose” = proof by contradiction again: we are going to drive this
assumption into a ditch]. Rewrite S(Sy + Sy) to get SSS(y + y) = z + z.
Now consider two cases:

Case 1 z = 0. Then SSS(y + y) = 0 + 0 = 0, contradicting our first axiom.

Case 2 z = Sw. Then SSS(y+ y) = Sw+Sw = SS(w+w). Applying the
second axiom twice gives S(y + y) = w + w. But this contradicts the
induction hypothesis.

Since both cases fail, our assumption must have been false. It follows that
S(Sy + Sy) is not even, and the induction goes through.

I.5 Defining more operations
Let’s define multiplication (·) by the axioms:

• 0 · y = 0.

• Sx · y = y + x · y.

Some properties of multiplication:

• x · 0 = 0.

• 1 · x = x.

• x · 1 = x.

• x · y = y · x.

• x · (y · z) = (x · y) · z.

• x 6= 0 ∧ x · y = x · z → y = z.

APPENDIX I. THE NATURAL NUMBERS 413

• x · (y + z) = x · y + x · z.

• x ≤ y → z · x ≤ z · y.

• z 6= 0 ∧ z · x ≤ z · y → x ≤ y.

(Note we are using 1 as an abbreviation for S0.)
The first few of these are all proved pretty much the same way as for

addition. Note that we can’t divide in N any more than we can subtract,
which is why we have to be content with multiplicative cancellation.

Exercise: Show that the Even(x) predicate, defined previously as ∃yy =
x + x, is equivalent to Even′(x) ≡ ∃yx = 2 · y, where 2 = SS0. Does this
definition make it easier or harder to prove ¬Even′(S0)?

Bibliography

[BD92] Dave Bayer and Persi Diaconis. Trailing the dovetail shuffle to its
lair. Annals of Applied Probability, 2(2):294–313, 1992.

[Ber34] George Berkeley. THE ANALYST; OR, A DISCOURSE Ad-
dressed to an Infidel MATHEMATICIAN. WHEREIN It is exam-
ined whether the Object, Principles, and Inferences of the modern
Analysis are more distinctly conceived, or more evidently deduced,
than Religious Mysteries and Points of Faith. Printed for J. Tonson,
London, 1734.

[Big02] Norman L. Biggs. Discrete Mathematics. Oxford University Press,
second edition, 2002.

[Bou70] N. Bourbaki. Théorie des Ensembles. Hermann, Paris, 1970.

[Ded01] Richard Dedekind. Essays on the Theory of Numbers. The Open
Court Publishing Company, Chicago, 1901. Translated by Wooster
Woodruff Beman.

[Die10] R. Diestel. Graph Theory. Graduate Texts in Mathematics.
Springer, 2010.

[Fer08] Kevin Ferland. Discrete Mathematics. Cengage Learning, 2008.

[Gen35a] Gerhard Gentzen. Untersuchungen über das logische Schließen. i.
Mathematische zeitschrift, 39(1):176–210, 1935.

[Gen35b] Gerhard Gentzen. Untersuchungen über das logische Schließen. ii.
Mathematische Zeitschrift, 39(1):405–431, 1935.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Con-
crete Mathematics: A Foundation for Computer Science. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd
edition, 1994.

414

BIBLIOGRAPHY 415

[GVL12] Gene H. Golub and Charles F. Van Loan. Matrix Computations.
Johns Hopkins University Press, 4th edition, 2012.

[Hal58] Paul R. Halmos. Finite-Dimensional Vector Spaces. Van Nostrand,
1958.

[Hau14] Felix Hausdorff. Grundzüge der Mengenlehre. Veit and Company,
Leipzig, 1914.

[Kol33] A.N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung.
Springer, 1933.

[Kur21] Casimir Kuratowski. Sur la notion de l’ordre dans la théorie des
ensembles. Fundamenta Mathematicae, 2(1):161–171, 1921.

[Mad88a] Penelope Maddy. Believing the axioms. I. Journal of Symbolic
Logic, 53(2):48–511, June 1988.

[Mad88b] Penelope Maddy. Believing the axioms. II. Journal of Symbolic
Logic, 53(3):736–764, September 1988.

[NWZ11] David Neumark, Brandon Wall, and Junfu Zhang. Do small
businesses create more jobs? New evidence for the United States
from the National Establishment time series. The Review of
Economics and Statistics, 93(1):16–29, February 2011.

[Pea89] Ioseph Peano. Arithmetices Principia: Nova Methodo Exposita.
Fratres Bocca, Rome, 1889.

[Pel99] Francis Jeffrey Pelletier. A history of natural deduction rules and
elementary logic textbooks. Available at http://www.sfu.ca/
~jeffpell/papers/pelletierNDtexts.pdf, 1999.

[Pol04] Goerge Polya. How to Solve it: A New Aspect of Mathematical
Method. Princeton University Press, 2004.

[Ros12] Kenneth Rosen. Discrete Mathematics and Its Applications.
McGraw-Hill Higher Education, seventh edition, 2012.

[Say33] Dorothy Sayers. Murder Must Advertise. Victor Gollancz, 1933.

[Sch01] Eric Schechter. Constructivism is difficult. American Mathematical
Monthly, 108:50–54, 2001.

http://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf
http://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf

BIBLIOGRAPHY 416

[Sol05] Daniel Solow. How to Read and Do Proofs: An Introduction to
Mathematical Thought Processes. Wiley, 2005.

[Sta97] Richard P. Stanley. Enumerative Combinatorics, Volume 1. Num-
ber 49 in Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 1997.

[Str05] Gilbert Strang. Linear Algebra and its Applications. Cengage
Learning, 4th edition, 2005.

[SW86] Dennis Stanton and Dennis White. Constructive Combinatorics.
Undergraduate Texts in Mathematics. Springer, 1986.

[TK74] Amos Tversky and Daniel Kahneman. Judgment under uncer-
tainty: Heuristics and biases. Science, 185(4157):1124–1131,
September 1974.

[Wil95] Andrew John Wiles. Modular elliptic curves and Fermat’s Last
Theorem. Annals of Mathematics, 141(3):443–551, 1995.

Index

O(f(n)), 105
Ω(f(n)), 105
Θ(f(n)), 105
↔, 15
N, 70, 80
N+, 114
Q, 70
Q+, 114
R, 70
R+, 114
Z, 80
Z+, 114
¬, 13
ω(f(n)), 105
φ(m), 128
→, 14
∨, 13
∧, 14
`1 norm, 270
`2 norm, 270
`∞ norm, 270
`p norm, 270
D, 80
k-permutation, 181
n-ary relation, 132
o(f(n)), 105

abelian group, 71, 285
absolute value, 82
absorption law, 22
abuse of notation, 72, 113
accepting state, 65

acyclic, 166
addition, 71
addition (inference rule), 37
additive identity, 285
additive inverse, 285
adjacency matrix, 134
adjacent, 156
adversary, 29
affine transformation, 277
aleph-nought, 66
aleph-null, 66
aleph-one, 66
aleph-zero, 66
algebra, 80

linear, 257
algebraic field extension, 287
algebraically closed, 79
alphabet, 65
and, 14
annihilator, 74
ansatz, 103
antisymmetric, 135
antisymmetry, 76
arc, 152
arguments, 26
associative, 71, 285
associativity, 71

of addition, 71
of multiplication, 73

associativity of addition, 410
asymptotic notation, 105
atom, 225

417

INDEX 418

automorphism, 163
average, 239
axiom, 9, 35
Axiom of Extensionality, 53
axiom schema, 58, 406
axiomatic set theory, 52, 57
axioms

field, 71
Peano, 405
real numbers, 70

base case, 84
Basel problem, 110
basis, 272
Bayes’s formula, 233
Bayesian interpretation, 224
Bernoulli distribution, 235
biconditional, 15
big O, 105
big Omega, 105
big Theta, 105
bijection, 63
bijective, 62, 63
binary relation, 132
bind, 26
binomial coefficient, 183, 189
binomial distribution, 235
binomial theorem, 189
bipartite, 314, 344
bipartite graph, 154
blackboard bold, 70
block, 136

cancellation, 410
Cantor pairing function, 67
Cantor’s diagonalization argument, 68
cardinal arithmetic, 66
cardinal numbers, 66
cardinality, 63, 174
Cartesian product, 60

case analysis, 21
Catalan number, 221
categorical graph product, 163
Cauchy sequence, 65
Cayley graph, 159
ceiling, 61, 82, 116
Central Limit Theorem, 235
central limit theorem, 250
chain rule, 401
Chebyshev’s inequality, 249
Chernoff bounds, 250
Chinese Remainder Theorem, 126
class

equivalence, 137
closed, 80
closed form, 101
closed walk, 165
closure, 148

reflexive, 148
reflexive symmetric transitive, 148
reflexive transitive, 148
symmetric, 148
transitive, 148

CNF, 23
codomain, 60
column, 261
column space, 275
column vector, 269
combinatorics, 174

enumerative, 174
commutative, 71, 285
commutative group, 71, 285
commutative ring, 114, 117, 285
commutative semiring, 114
commutativity, 71

of addition, 71
of multiplication, 73

commutativity of addition, 410
comparability, 76
comparable, 138, 140

INDEX 419

compatible, 264
complement, 55
complete bipartite, 158
complete graph, 156
completeness, 36
complex, 70
complex number, 70
component

strongly-connected, 150
composed, 62
composite, 115
composition, 62

of relations, 134
compound proposition, 15
comprehension

list, 54
restricted, 58
set, 53

conclusion, 35
conditional expectation, 241
conditional probability, 231
congruence mod m, 117
conjunction (inference rule), 37
conjunctive normal form, 23
connected, 164
connected components, 164
connected to, 164
consistent, 10
constant, 32
constants, 11
constructive, 42
contained in, 55
continuous

random variable, 254
contraction, 161
contradiction, 17
contrapositive, 19
converges, 99
converse, 21
coordinate, 257

coprime, 119
countable, 68
counting two ways, 182
covariance, 248
CRC, 291
cross product, 163
CRT, 126
cube, 159
cumulative distribution function, 234
Curry-Howard isomorphism, 21
currying, 300
cycle, 158, 165

simple, 165
cyclic redundancy check, 291

DAG, 133, 166
decision theory, 238
Dedekind cut, 65
deducible, 35
Deduction Theorem, 39
definite integral, 402
definition

recursive, 83, 84
degree, 156, 286
dense, 78
density, 254

joint, 255
derivative, 400
deterministic finite state machine, 65
diagonalization, 68
die roll, 228
differential, 400
dihedral group, 159
dimension, 257, 261, 274

of a matrix, 134
directed acyclic graph, 133, 150, 166
directed graph, 132, 152, 153
directed multigraph, 153
discrete probability, 225
discrete random variable, 234

INDEX 420

disjoint, 66
disjoint union, 66
disjunctive normal form, 24
disjunctive syllogism, 37
distribution, 234

Bernoulli, 235
binomial, 235
geometric, 235
joint, 236
marginal, 236
normal, 235
Poisson, 235
uniform, 235

distribution function, 234, 253
distributive, 285
divergence to infinity, 400
divided by, 73
divides, 115
divisibility, 139
divisible, 115
division, 73
division algorithm, 89, 116

for polynomials, 286
divisor, 115

zero, 123
DNF, 24
domain, 25, 60
dominate, 313
dot product, 271
double factorial, 338
downward closed, 65
duality, 139, 141
dyadics, 80

edge, 132
parallel, 132, 152

edges, 152
egf, 223
Einstein summation convention, 98
element, 52

minimal, 64
minimum, 359

elements, 52, 261
empty set, 53
endpoint, 153
entries, 261
enumerative combinatorics, 174
equality, 32
equivalence class, 137
equivalence relation, 136
Euclidean algorithm, 120

extended, 120
Euclidean norm, 270
Euler’s Theorem, 129
Euler’s totient function, 128
Eulerian cycle, 166
Eulerian tour, 166
even, 117
even numbers, 67
event, 225
exclusive or, 13
existential quantification, 26
existential quantifier, 27
expectation, 238
exponential generating function, 223
extended Euclidean algorithm, 120
extended real line, 78
extension

of a partial order to a total order,
143

factor, 115
factorial, 180, 338

double, 338
false positive, 233
Fermat’s Little Theorem, 129
field, 71, 284

finite, 117, 283
Galois, 288
ordered, 76

INDEX 421

field axioms, 71
field extension, 287
field of fractions, 81
finite field, 117, 283
finite simple undirected graph, 152
finite von Neumann ordinal, 58
first-order logic, 26
floating-point number, 71
floor, 61, 82, 116
flush, 352
formal power series, 192, 199
fraction, 70, 81
fractional part, 82
frequentist interpretation, 224
full rank, 279
function

generating, 197
identity, 301
successor, 32

function symbol, 32
functions, 60
Fundamental Theorem of Arithmetic,

123

Galois field, 288
gcd, 119
Generalized Continuum Hypothesis,

66
generating function, 197, 199

probability, 250
generating functions, 197
geometric distribution, 235
Goldbach’s conjecture, 32
graph, 152

bipartite, 133, 154
directed, 132
directed acyclic, 133, 150
simple, 132, 152
two-path, 347
undirected, 152

graph Cartesian product, 162
graph homomorphism, 163, 344
graph isomorphism, 163
greatest common divisor, 119
greatest lower bound, 78, 141
group, 71, 285

abelian, 285
commutative, 71, 285

Hamiltonian cycle, 166
Hamiltonian tour, 167
harmonic number, 110
harmonic series, 110
Hasse diagram, 140
head, 153
homomorphism, 118

graph, 163, 344
hyperedges, 154
hypergraph, 154
hypothesis, 35
hypothetic syllogism, 37

identity, 72
additive, 285
for addition, 72
for multiplication, 73
multiplicative, 285

identity element, 100
identity function, 301
identity matrix, 265
if and only if, 15
immediate predecessor, 140
immediate successor, 140
implication, 14
in-degree, 156
incident, 156
inclusion-exclusion, 194
inclusion-exclusion formula, 178
inclusive or, 13
incomparable, 140

INDEX 422

incompleteness theorem, 36
indefinite integral, 402
independent, 228, 236, 255

pairwise, 248
index of summation, 92
indicator variable, 233
indirect proof, 19
induced subgraph, 161
induction, 83
induction hypothesis, 84
induction schema, 84, 406
induction step, 84
inequality

Chebyshev’s, 249
inference rule, 36
inference rules, 9, 35
infimum, 78
infinite descending chain, 147
infinitesimal, 78
infix notation, 132
initial state, 65
initial vertex, 132, 153
injection, 63
injective, 62, 63
integer, 70
integers, 80

positive, 114
integers mod m, 117
integral

definite, 402
indefinite, 402
Lebesgue, 402
Lebesgue-Stieltjes, 238

integration by parts, 403
intersection, 54
intuitionistic logic, 21
invariance

scaling, 76
translation, 76

inverse, 19, 63, 73

additive, 285
multiplicative, 285
of a relation, 135

invertible, 265
irrational, 70
irreducible, 287
isomorphic, 62, 81, 136, 163
isomorphism, 126

graph, 163

join, 119, 141
joint density, 255
joint distribution, 234, 236, 254

Kolmogorov’s extension theorem, 227

labeled, 155
lambda calculus, 69
lattice, 119, 141
law of non-contradiction, 21
law of the excluded middle, 21
law of total probability, 232
lcm, 119
least common multiple, 119
least upper bound, 77, 141
Lebesgue integral, 402
Lebesgue-Stieltjes integral, 238
lemma, 35, 39, 409
length, 158, 164, 270
lex order, 139
lexicographic order, 139
LFSR, 283
limit, 99, 398
linear, 95, 239, 274
linear algebra, 257
linear combination, 272
linear transformation, 263, 274
linear-feedback shift register, 283
linearly independent, 272
list comprehension, 54
little o, 105

INDEX 423

little omega, 105
logical equivalence, 17
logically equivalent, 17
loops, 153
lower bound, 78, 92
lower limit, 92
lower-factorial, 182

magma, 285
marginal distribution, 236
Markov’s inequality, 245
matching, 325

perfect, 325
mathematical maturity, 1, 3
matrix, 133, 261

adjacency, 134
maximal, 142
maximum, 142
measurable, 253
measurable set, 226
meet, 119, 141
membership, 52
mesh, 162
method of infinite descent, 87
minimal, 142
minimal element, 64
minimum, 142
minimum element, 359
minor, 161
minus, 72
model, 10, 17, 34
model checking, 17
modus ponens, 25, 36, 37
modus tollens, 37
monoid, 285
multigraph, 154
multinomial coefficient, 183
multiplicative identity, 285
multiplicative inverse, 121, 124, 285
multiset, 138

multivariate generating functions, 207

naive set theory, 52
natural, 70
natural deduction, 40
natural number, 70
natural numbers, 53, 80, 405

positive, 114
negation, 13, 72
negative, 72, 76
neighborhood, 156
node, 152
non-constructive, 21, 42, 59
non-negative, 76
non-positive, 76
norm, 270

`1, 270
`2, 270
`∞, 270
`p, 270
Euclidean, 270

normal, 272
normal distribution, 235, 254
notation

abuse of, 113
asymptotic, 105

number
complex, 70
floating-point, 71
natural, 70
rational, 70
real, 70

number theory, 114

O
big, 105

o
little, 105

octonion, 70
odd, 117

INDEX 424

odd numbers, 67
Omega

big, 105
omega

little, 105
on average, 239
one-to-one, 63
one-to-one correspondence, 63
onto, 63
or, 13

exclusive, 13
inclusive, 13

order
lexicographic, 139
partial, 138
pre-, 140
quasi-, 140
total, 76, 138, 143

ordered field, 76
ordered pair, 59
ordinal

von Neumann, 63
finite, 58

orthogonal, 271
orthogonal basis, 272
orthonormal, 272
out-degree, 156
outcome, 226
over, 73

pairwise disjoint, 177
pairwise independent, 248
parallel edge, 132
parallel edges, 152
partial order, 119, 138

strict, 138
partially ordered set, 138
partition, 65, 136
Pascal’s identity, 190
Pascal’s triangle, 191

path, 158, 164
Peano axioms, 405
peer-to-peer, 156
perfect matching, 325
permutation, 182

k-, 181
pgf, 223, 250
plus, 71
Poisson distribution, 235
poker deck, 352
poker hand, 228
pole, 217
polynomial ring, 286
poset, 138

product, 139
positive, 76
positive integers, 114
positive natural numbers, 114
power, 165
power series

formal, 192
pre-order, 140
predecessor, 140
predicate logic, 11
predicates, 11, 26
prefix, 139
premise, 35
prime, 88, 115
prime factorization, 123
probability, 224, 225

conditional, 231
discrete, 225

probability generating function, 223,
250

probability mass function, 234, 254
probability measure, 226
probability space, 226

uniform, 227
product, 264
product poset, 139

INDEX 425

product rule, 179
projection, 279
projection matrix, 281
proof

by contraposition, 19
proof by construction, 42
proof by contraposition, 19
proof by example, 42
proper subset, 55
proposition, 12

compound, 15
propositional logic, 11, 12
provable, 35
pseudo-ring, 285
Pythagorean theorem, 272

quadrangle closed, 314
quadrangle closure, 314
quadratic form, 326
quantifiers, 26
quantify, 11
quasi-order, 140
quaternion, 70
quotient, 115
quotient set, 137

radius of convergence, 217
random bit, 228
random permutation, 228
random variable, 233, 253

continuous, 254
discrete, 234

range, 60, 63
rank, 279
ranking, 189
rational, 70
rational decision maker, 239
rational functions, 217
rational number, 70
reachable, 164

real number, 70
recursion, 83
recursive, 90
recursive definition, 83, 84
recursively-defined, 89
reflexive, 135
reflexive closure, 148
reflexive symmetric transitive closure,

148
reflexive transitive closure, 148
reflexivity, 76
reflexivity axiom, 32
regression to the mean, 243
regular expression, 211
relation, 132

n-ary, 132
binary, 132
equivalence, 136
on a set, 132

relatively prime, 119
remainder, 116
representative, 117, 137
residue class, 117
resolution, 24, 37
resolution proof, 24
resolving, 24
restricted comprehension, 58
restriction, 181
Riemann hypothesis, 111
Riemann zeta function, 110
rig, 285
ring, 74, 76, 285

commutative, 114, 117, 285
polynomial, 286

rng, 285
round-off error, 71
row, 261
row space, 276
row vector, 269
RSA encryption, 129

INDEX 426

Russell’s paradox, 54

scalar, 259, 260, 267
scalar multiplication, 260
scalar product, 267
scaling, 259, 277
scaling invariance, 76
second-order logic, 407
selection sort, 143
self-loops, 152
semigroup, 285
semiring, 76, 285

commutative, 114
sequence, 261
series

power
formal, 192

set comprehension, 53
set difference, 54
set theory

axiomatic, 57
naive, 52

set-builder notation, 53
shear, 278
sigma-algebra, 226
signature, 34
signum, 82
simple, 153, 164
simple cycle, 165
simple induction, 83
simple undirected graph, 153
simplification (inference rule), 37
sink, 132, 153
size, 63
sort

selection, 143
topological, 143

soundness, 36
source, 132, 153
span, 272

spanning tree, 172
square, 261
square product, 162
standard basis, 272
star graph, 159
state space, 65
statement, 11
Stirling number, 182
strict partial order, 138
strong induction, 87
strongly connected, 165
strongly-connected component, 150
strongly-connected components, 165
structure, 34
sub-algebra, 80
subgraph, 161

induced, 161
subscript, 61
subset, 54

proper, 55
subspace, 272
substitution (inference rule), 40
substitution axiom schema, 33
substitution rule, 33, 40
subtraction, 72
successor, 140
successor function, 32
sum rule, 176
summation, 92
superset, 55
supremum, 78
surjection, 63
surjective, 62, 63
symmetric, 135, 263
symmetric closure, 148
symmetric difference, 54
symmetry, 33
syntactic sugar, 61

tail, 153

INDEX 427

tautology, 17
terminal vertex, 132, 153
theorem, 9, 35, 39, 409

Wagner’s, 161
theory, 9, 34
Theta

big, 105
Three Stooges, 53
topological sort, 143
topologically sorted, 166
total order, 76, 138, 143
totally ordered, 138
totient, 128
transition function, 65
transition matrix, 263
transitive, 135
transitive closure, 148, 165
transitivity, 33, 76
translation invariance, 76
transpose, 263
tree, 166, 168
triangle inequality, 270
trichotomy, 76
truth table, 16

proof using, 17
tuples, 61
turnstile, 36
two-path graph, 347

uncorrelated, 248
uncountable, 69
undirected graph, 152, 153
uniform discrete probability space, 227
uniform distribution, 235
union, 54
unit, 115
unit vector, 270
universal quantification, 26
universal quantifier, 26
universe, 55

universe of discourse, 25
unranking, 189
upper bound, 77, 92
upper limit, 92
urelement, 53

valid, 36, 37
Vandermonde’s identity, 192
variable

indicator, 233
variance, 246
vector, 257, 260, 269

unit, 270
vector space, 257, 260
vertex, 132

initial, 132
terminal, 132

vertices, 152
von Neumann ordinal, 63

finite, 58

Wagner’s theorem, 161
weakly connected, 165
web graph, 156
weight, 198
well order, 146
well-defined, 409
well-ordered, 64, 86

Zermelo-Fraenkel set theory with choice,
57

zero divisor, 123
ZFC, 57
Zorn’s lemma, 146

	Table of contents
	List of figures
	List of tables
	List of algorithms
	Preface
	Syllabus
	Resources
	Internet resources
	Lecture schedule
	Introduction
	So why do I need to learn all this nasty mathematics?
	But isn't math hard?
	Thinking about math with your heart
	What you should know about math
	Foundations and logic
	Basic mathematics on the real numbers
	Fundamental mathematical objects
	Modular arithmetic and polynomials
	Linear algebra
	Graphs
	Counting
	Probability
	Tools

	Mathematical logic
	The basic picture
	Axioms, models, and inference rules
	Consistency
	What can go wrong
	The language of logic
	Standard axiom systems and models

	Propositional logic
	Operations on propositions
	Precedence

	Truth tables
	Tautologies and logical equivalence
	Inverses, converses, and contrapositives
	Equivalences involving true and false
	Example

	Normal forms

	Predicate logic
	Variables and predicates
	Quantifiers
	Universal quantifier
	Existential quantifier
	Negation and quantifiers
	Restricting the scope of a quantifier
	Nested quantifiers
	Examples

	Functions
	Equality
	Uniqueness

	Models
	Examples

	Proofs
	Inference Rules
	Proofs, implication, and natural deduction
	The Deduction Theorem
	Natural deduction

	Inference rules for equality
	Inference rules for quantified statements

	Proof techniques
	Examples of proofs
	Axioms for even numbers
	A theorem and its proof
	A more general theorem
	Something we can't prove

	Set theory
	Naive set theory
	Operations on sets
	Proving things about sets
	Axiomatic set theory
	Cartesian products, relations, and functions
	Examples of functions
	Sequences
	Functions of more (or less) than one argument
	Composition of functions
	Functions with special properties
	Surjections
	Injections
	Bijections
	Bijections and counting

	Constructing the universe
	Sizes and arithmetic
	Infinite sets
	Countable sets
	Uncountable sets

	Further reading

	The real numbers
	Field axioms
	Axioms for addition
	Axioms for multiplication
	Axioms relating multiplication and addition
	Other algebras satisfying the field axioms

	Order axioms
	Least upper bounds
	What's missing: algebraic closure
	Arithmetic
	Connection between the reals and other standard algebras
	Extracting information from reals

	Induction and recursion
	Simple induction
	Alternative base cases
	Recursive definitions work
	Other ways to think about induction
	Strong induction
	Examples

	Recursively-defined structures
	Functions on recursive structures
	Recursive definitions and induction
	Structural induction

	Summation notation
	Summations
	Formal definition
	Scope
	Summation identities
	Choosing and replacing index variables
	Sums over given index sets
	Sums without explicit bounds
	Infinite sums
	Double sums

	Products
	Other big operators
	Closed forms
	Some standard sums
	Guess but verify
	Ansatzes

	Asymptotic notation
	Definitions
	Motivating the definitions
	Proving asymptotic bounds
	General principles for dealing with asymptotic notation
	Remember the difference between big-O, big-Omega, and big-Theta
	Simplify your asymptotic terms as much as possible
	Use limits (may require calculus)

	Asymptotic notation and summations
	Pull out constant factors
	Bound using a known sum
	Geometric series
	Constant series
	Arithmetic series
	Harmonic series

	Bound part of the sum
	Integrate
	Grouping terms
	An odd sum
	Final notes

	Variations in notation
	Absolute values
	Abusing the equals sign

	Number theory
	Divisibility
	The division algorithm
	Modular arithmetic and residue classes
	Arithmetic on residue classes

	Greatest common divisors
	The Euclidean algorithm for computing gcd(m,n)
	The extended Euclidean algorithm
	Example
	Applications

	The Fundamental Theorem of Arithmetic
	Unique factorization and gcd

	More modular arithmetic
	Division in Zm
	The Chinese Remainder Theorem
	The size of Z*m and Euler's Theorem

	RSA encryption

	Relations
	Representing relations
	Directed graphs
	Matrices

	Operations on relations
	Composition
	Inverses

	Classifying relations
	Equivalence relations
	Why we like equivalence relations

	Partial orders
	Drawing partial orders
	Comparability
	Lattices
	Minimal and maximal elements
	Total orders
	Topological sort

	Well orders

	Closures
	Examples

	Graphs
	Types of graphs
	Directed graphs
	Undirected graphs
	Hypergraphs

	Examples of graphs
	Local structure of graphs
	Some standard graphs
	Subgraphs and minors
	Graph products
	Functions between graphs
	Paths and connectivity
	Cycles
	Proving things about graphs
	Paths and simple paths
	The Handshaking Lemma
	Characterizations of trees
	Spanning trees
	Eulerian cycles

	Counting
	Basic counting techniques
	Equality: reducing to a previously-solved case
	Inequalities: showing |A| <= |B| and |B| <= |A|
	Addition: the sum rule
	For infinite sets
	The Pigeonhole Principle

	Subtraction
	Inclusion-exclusion for infinite sets
	Combinatorial proof

	Multiplication: the product rule
	Examples
	For infinite sets

	Exponentiation: the exponent rule
	Counting injections

	Division: counting the same thing in two different ways
	Binomial coefficients
	Multinomial coefficients

	Applying the rules
	An elaborate counting problem
	Further reading

	Binomial coefficients
	Recursive definition
	Pascal's identity: algebraic proof

	Vandermonde's identity
	Combinatorial proof
	Algebraic proof

	Sums of binomial coefficients
	The general inclusion-exclusion formula
	Negative binomial coefficients
	Fractional binomial coefficients
	Further reading

	Generating functions
	Basics
	A simple example
	Why this works
	Formal definition

	Some standard generating functions
	More operations on formal power series and generating functions
	Counting with generating functions
	Disjoint union
	Cartesian product
	Repetition
	Example: (0|11)*
	Example: sequences of positive integers

	Pointing
	Substitution
	Example: bit-strings with primes
	Example: (0|11)* again

	Generating functions and recurrences
	Example: A Fibonacci-like recurrence

	Recovering coefficients from generating functions
	Partial fraction expansion and Heaviside's cover-up method
	Example: A simple recurrence
	Example: Coughing cows
	Example: A messy recurrence

	Partial fraction expansion with repeated roots
	Solving for the PFE directly
	Solving for the PFE using the extended cover-up method

	Asymptotic estimates
	Recovering the sum of all coefficients
	Example

	A recursive generating function
	Summary of operations on generating functions
	Variants
	Further reading

	Probability theory
	Events and probabilities
	Probability axioms
	The Kolmogorov axioms
	Examples of probability spaces

	Probability as counting
	Examples

	Independence and the intersection of two events
	Examples

	Union of events
	Examples

	Conditional probability
	Conditional probabilities and intersections of non-independent events
	The law of total probability
	Bayes's formula

	Random variables
	Examples of random variables
	The distribution of a random variable
	Some standard distributions
	Joint distributions
	Examples

	Independence of random variables
	Examples
	Independence of many random variables

	The expectation of a random variable
	Variables without expectations
	Expectation of a sum
	Example

	Expectation of a product
	Conditional expectation
	Examples

	Conditioning on a random variable

	Markov's inequality
	Example
	Conditional Markov's inequality

	The variance of a random variable
	Multiplication by constants
	The variance of a sum
	Chebyshev's inequality
	Application: showing that a random variable is close to its expectation
	Application: lower bounds on random variables

	Probability generating functions
	Sums
	Expectation and variance

	Summary: effects of operations on expectation and variance of random variables
	The general case
	Densities
	Independence
	Expectation

	Linear algebra
	Vectors and vector spaces
	Relative positions and vector addition
	Scaling

	Abstract vector spaces
	Matrices
	Interpretation
	Operations on matrices
	Transpose of a matrix
	Sum of two matrices
	Product of two matrices
	The inverse of a matrix
	Example

	Scalar multiplication

	Matrix identities

	Vectors as matrices
	Length
	Dot products and orthogonality

	Linear combinations and subspaces
	Bases

	Linear transformations
	Composition
	Role of rows and columns of M in the product Mx
	Geometric interpretation
	Rank and inverses
	Projections

	Further reading

	Finite fields
	A magic trick
	Fields and rings
	Polynomials over a field
	Algebraic field extensions
	Applications
	Linear-feedback shift registers
	Checksums
	Cryptography

	Assignments
	Assignment 1: Due Wednesday, 2017-09-13, at 5:00 pm
	A curious proposition
	Relations
	A theory of shirts

	Assignment 2: Due Wednesday, 2017-09-20, at 5:00 pm
	Arithmetic, or is it?
	Some distributive laws
	Elements and subsets

	Assignment 3: Due Wednesday, 2017-09-27, at 5:00 pm
	A powerful problem
	A correspondence
	Inverses

	Assignment 4: Due Wednesday, 2017-10-04, at 5:00 pm
	Covering a set with itself
	More inverses
	Rational and irrational

	Assignment 5: Due Wednesday, 2017-10-11, at 5:00 pm
	A recursive sequence
	Comparing products
	Rubble removal

	Assignment 6: Due Wednesday, 2017-10-25, at 5:00 pm
	An oscillating sum
	An approximate sum
	A stretched function

	Assignment 7: Due Wednesday, 2017-11-01, at 5:00 pm
	Divisibility
	Squares
	A Series of Unfortunate Exponents

	Assignment 8: Due Wednesday, 2017-11-08, at 5:00 pm
	Minimal and maximal elements
	No trailing zeros
	Domination

	Assignment 9: Due Wednesday, 2017-11-15, at 5:00 pm
	Quadrangle closure
	Cycles
	Deleting a graph

	Assignment 10: Due Wednesday, 2017-11-29, at 5:00 pm
	Too many injections
	Binomial coefficients
	Variable names

	Exams
	CPSC 202 Exam 1, October 17th, 2017
	Factorials (20 points)
	A tautology (20 points)
	Subsets (20 points)
	Surjective functions (20 points)

	CPSC 202 Exam 2, December 7th, 2017
	Non-decreasing sequences (20 points)
	Perfect matchings (20 points)
	Quadratic forms (20 points)
	Minimal lattices (20 points)

	Sample assignments from Fall 2013
	Assignment 1: due Thursday, 2013-09-12, at 5:00 pm
	Tautologies
	Positively equivalent
	A theory of leadership

	Assignment 2: due Thursday, 2013-09-19, at 5:00 pm
	Subsets
	A distributive law
	Exponents

	Assignment 3: due Thursday, 2013-09-26, at 5:00 pm
	Surjections
	Proving an axiom the hard way
	Squares and bigger squares

	Assignment 4: due Thursday, 2013-10-03, at 5:00 pm
	A fast-growing function
	A slow-growing set
	Double factorials

	Assignment 5: due Thursday, 2013-10-10, at 5:00 pm
	A bouncy function
	Least common multiples of greatest common divisors
	Adding and subtracting

	Assignment 6: due Thursday, 2013-10-31, at 5:00 pm
	Factorials mod n
	Indivisible and divisible
	Equivalence relations

	Assignment 7: due Thursday, 2013-11-07, at 5:00 pm
	Flipping lattices with a function
	Splitting graphs with a mountain
	Drawing stars with modular arithmetic

	Assignment 8: due Thursday, 2013-11-14, at 5:00 pm
	Two-path graphs
	Even teams
	Inflected sequences

	Assignment 9: due Thursday, 2013-11-21, at 5:00 pm
	Guessing the median
	Two flushes
	Dice and more dice

	Sample exams from Fall 2013
	CS202 Exam 1, October 17th, 2013
	A tautology (20 points)
	A system of equations (20 points)
	A sum of products (20 points)
	A subset problem (20 points)

	CS202 Exam 2, December 4th, 2013
	Minimum elements (20 points)
	Quantifiers (20 points)
	Quadratic matrices (20 points)
	Low-degree connected graphs (20 points)

	Midterm exams from earlier semesters
	Midterm Exam, October 12th, 2005
	A recurrence (20 points)
	An induction proof (20 points)
	Some binomial coefficients (20 points)
	A probability problem (20 points)

	Midterm Exam, October 24th, 2007
	Dueling recurrences (20 points)
	Seating arrangements (20 points)
	Non-attacking rooks (20 points)
	Subsets (20 points)

	Midterm Exam, October 24th, 2008
	Some sums (20 points)
	Nested ranks (20 points)
	Nested sets (20 points)
	An efficient grading method (20 points)

	Midterm exam, October 21st, 2010
	A partial order (20 points)
	Big exponents (20 points)
	At the playground (20 points)
	Gauss strikes back (20 points)

	Final exams from earlier semesters
	CS202 Final Exam, December 15th, 2004
	A multiplicative game (20 points)
	An equivalence in space (20 points)
	A very big fraction (20 points)
	A pair of odd vertices (20 points)
	How many magmas? (20 points)
	A powerful relationship (20 points)
	A group of archaeologists (20 points)

	CS202 Final Exam, December 16th, 2005
	Order (20 points)
	Count the subgroups (20 points)
	Two exits (20 points)
	Victory (20 points)
	An aggressive aquarium (20 points)
	A subspace of matrices (20 points)

	CS202 Final Exam, December 20th, 2007
	A coin-flipping problem (20 points)
	An ordered group (20 points)
	Weighty vectors (20 points)
	A dialectical problem (20 points)
	A predictable pseudorandom generator (20 points)
	At the robot factory (20 points)

	CS202 Final Exam, December 19th, 2008
	Some logical sets (20 points)
	Modularity (20 points)
	Coin flipping (20 points)
	A transitive graph (20 points)
	A possible matrix identity (20 points)

	CS202 Final Exam, December 14th, 2010
	Backwards and forwards (20 points)
	Linear transformations (20 points)
	Flipping coins (20 points)
	Subtracting dice (20 points)
	Scanning an array (20 points)

	How to write mathematics
	By hand
	LaTeX
	Microsoft Word equation editor
	Google Docs equation editor
	ASCII and/or Unicode art
	Markdown

	Tools from calculus
	Limits
	Derivatives
	Integrals

	The natural numbers
	The Peano axioms
	A simple proof
	Defining addition
	Other useful properties of addition

	A scary induction proof involving even numbers
	Defining more operations

	Bibliography
	Index

